Skip to main content
Log in

Electrokinetic mixing in microfluidic systems

  • Review
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

The applications of electrokinetics in the development of microfluidic devices have been widely attractive in the past decade. Electrokinetic devices generally require no external mechanical moving parts and can be made portable by replacing the power supply by small battery. Therefore, electrokinetic-based microfluidic systems can serve as a viable tool in creating a lab-on-a-chip (LOC) or micro-total analysis system (μTAS) for use in biological and chemical assays. Mixing of analytes and reagents is a critical step in realizing lab-on-a-chip. This step is difficult due to the low Reynolds numbers flows in microscale devices. Hence, various schemes to enhance micro-mixing have been proposed in the past years. This review reports recent developments in the micro-mixing schemes based on DC and AC electrokinetics, including electrowetting-on-dielectric (EWOD), dielectrophoresis (DEP), and electroosmosis (EO). These electrokinetic-based mixing approaches are generally categorized as either active or passive in nature. Active mixers either use time-dependent (AC or DC field switching) or time-independent (DC field) external electric fields to achieve mixing, while passive mixers achieve mixing in DC fields simply by virtue of their geometric topology and surface properties, or electrokinetic instability flows. Typically, chaotic mixing can be achieved in some ways and is helpful to mixing under large Péclet number regimes. The overview given in this article provides a potential user or researcher of electrokinetic-based technology to select the most favorable mixing scheme for applications in the field of micro-total analysis systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  • Ajdari A (1995) Electro-osmosis on inhomogeneous charged surfaces. Phys Rev Lett 75:755–758

    Google Scholar 

  • Ajdari A (1996) Generation of transverse fluid currents and forces by an electric field: electro-osmosis on charge-modulated and undulate surfaces. Phys Rev E 53:4996–5005

    Google Scholar 

  • Ajdari A (2000) Pumping liquids using asymmetric electrode arrays. Phys Rev E 61:R45–R48

    Google Scholar 

  • Ajdari A (2001) Transverse electrokinetic and microfluidic effects in micropatterned channels: lubrication analysis for slab geometries. Phys Rev E 65:016301

    Google Scholar 

  • Anderson JL, Idol WK (1985) Electroosmosis through pores with nonuniformly charged walls. Chem Eng Commun 38:93–106

    Google Scholar 

  • Bazant MZ, Ben Y (2006) Theoretical prediction of fast 3D AC electro-osmotic pumps. Lab Chip 6:1455–1461

    Google Scholar 

  • Bazant MZ, Squires TM (2004) Induced-charge electrokinetic phenomena: theory and microfluidic applications. Phys Rev Lett 92:066101

    Google Scholar 

  • Ben Y, Chang H-C (2002) Nonlinear Smoluchowski slip velocity and micro-vortex generation. J Fluid Mech 461:229–238

    MATH  Google Scholar 

  • Biddiss E, Erickson D, Li D (2004) Heterogeneous surface charge enhanced micromixing for electrokinetic flows. Anal Chem 76:3208–3213

    Google Scholar 

  • Brown ABD, Smith CG, Rennie AR (2001) Pumping of water with AC electric fields applied to asymmetric pairs of microelectrodes. Phys Rev E 63: 016305

    Google Scholar 

  • Chang H-C (2006) Electro-kinetics: a viable micro-fluidic platform for miniature diagnostic kits. Can J Chem Eng 84:146–160

    Google Scholar 

  • Chang C-C, Yang R-J (2004) Computational analysis of electrokinetically driven flow mixing with patterned blocks. J Micromech Microeng 14: 550–558

    Google Scholar 

  • Chang C-C, Yang R-J (2006) A particle tracking method for analyzing chaotic electroosmotic flow mixing in 3-D microchannels with patterned charged surfaces. J Micromech Microeng 16:1453–1462

    Google Scholar 

  • Chang M-S, Homsy GM (2005) Effects of Joule heating on the stability of time-modulated electro-osmotic flow. Phys Fluids 17:074107

    Google Scholar 

  • Chen C-H, Lin H, Lele SK, Santiago JG (2005) Convective and absolute electrokinetic instability with conductivity gradients. J Fluid Mech 524:263–303

    MATH  Google Scholar 

  • Chen J-K, Luo W-J, Yang R-J (2006) Electroosmotic flow driven by DC and AC electric fields in curved microchannels. Jap J Appl Phys 45: 7983–7990

    Google Scholar 

  • Coleman JT, Sinton D (2005) A sequential injection microfluidic mixing strategy. Microfluid Nanofluid 1:319–327

    Google Scholar 

  • Coleman JT, Mckechnie J, Sinton D (2006) High-efficiency electrokinetic micromixing through symmetric sequential injection and expansion. Lab Chip 6:1033–1039

    Google Scholar 

  • Craighead H (2006) Future lab-on-a-chip tehnologies for interrogating individual molecules. Nature 442:387–393

    Google Scholar 

  • Culbertson CT, Jacobson SC, Ramsey JM (1998) Dispersion sources for compact geometries on microchips. Anal Chem 70:3781–3789

    Google Scholar 

  • Cummings EB, Griffiths SK, Nilson RH, Paul PH (2000) Conditions for similitude between the fluid velocity and electric field in electroosmotic flow. Anal Chem 72:2526–2532

    Google Scholar 

  • deMello AJ (2006) Control and detection of chemical reactions in microfluidic systems. Nature 442:394–402

    Google Scholar 

  • Deval J, Tabling P, Ho C-M (2002) A dielectrophoretic chaotic mixer. In: Proc 15th IEEE Workshop on MEMS, Las Vegas, USA, pp 36–39

  • Dodge A, Hountondji A, Jullien MC, Tabeling P (2005) Spatiotemporal resonances in a microfluidic system. Phys Rev E 72:056312

    Google Scholar 

  • Dukhin SS (1991) Electrokinetic phenomena of the second kind and their application. Adv Colloid Interf Sci 35:173–196

    Google Scholar 

  • El-Ali J, Sorger PK, Jensen KF (2006) Cells on chips. Nature 442:403–411

    Google Scholar 

  • El Moctar AO, Aubry N, Batton J (2003) Electro-hydrodynamic micro-fluidic mixer. Lab on a Chip 3:273–280

    Google Scholar 

  • Erickson D, Li D (2002) Influence of surface heterogeneity on electrokinetically driven microfluidic mixing. Langmuir 18:1883–1892

    Google Scholar 

  • Erickson D, Li D (2003) Three-dimensional structure of electroosmotic flow over heterogeneous surfaces. J Phys Chem 107:12212–12220

    Google Scholar 

  • Fair RB (2007) Digital microfluidics: is a true lab-on-a-chip possible? Microfluid. Nanofluid 3:245–281

    Google Scholar 

  • Fushinobu K, Nakata M (2005) An experimental and numerical study of a liquid mixing device for Microsystems. Trans ASME J Electronic Packaging 127:141–146

    Google Scholar 

  • Fu L-M, Lin J-Y, Yang R-J (2003) Analysis of electroosmotic flow with step change in zeta potential. J Colloid Interf Sci 258:266–275

    Google Scholar 

  • Fu L-M, Yang R-J, Lin C-H, Chien Y-S (2005) A novel microfluidic mixer utilizing electrokinetic driving forces under low switching frequency. Electrophoresis 26:1814–1824

    Google Scholar 

  • Glasgow I, Lieber S, Aubry N (2004) Parameters influencing pulsed flow mixing in microchannels. Anal Chem 76:4825–4832

    Google Scholar 

  • Glasgow I, Batton J, Aubry N (2004) Electroosmotic mixing in microchannels. Lab Chip 4:558–562

    Google Scholar 

  • Gonzalez A, Ramos A, Green NG, Castellanos A, Morgan H (2000) Fluid flow induced by nonuniform AC electric fields in electrolytes on microelectrodes. II. A linear double layer analysis. Phys Rev E 61: 4019–4028

    Google Scholar 

  • Green NG, Ramos A, Gonzalez A, Morgan H, Castellanos A (2000) Fluid flow induced by nonuniform AC electric fields in electrolytes on microelectrodes. I. Experimental measurements. Phys Rev E 61: 4011–4018

    Google Scholar 

  • Griffiths SK, Nilson RH (2000) Band spreading in two-dimensional microchannel turns for electrokinetic species transport. Anal Chem 72: 5473–5482

    Google Scholar 

  • Hardt S, Drese K S, Hessel V, Schönfeld F (2005) Passive micromixers for applications in the microreactor and μTAS fields. Microfluid Nanofluid 1:108–118

    Google Scholar 

  • Hardt S, Pennemann H, Schönfeld F (2006) Theoretical and experimental characterization of a low-Reynolds number split-and-recombine mixer Microfluid. Nanofluid 2:237–248

    Google Scholar 

  • Hardt S, Schönfeld F (2003) Laminar mixing in different interdigital micromixers: II. Numerical simulations. AIChE J 49:578–584

    Google Scholar 

  • Hau WLW, Trau DW, Sucher NJ, Wong M, Zohar Y (2003) Surface-chemistry technology for micro fluidics. J Micromech Microeng 13:272–278

    Google Scholar 

  • Herr AE, Molho JI, Santiago JG, Mungal MG, Kenny TW, Garguilo MG (2000) Electroosmotic capillary flow with nonuniform zeta potential. Anal Chem 72:1052–1057

    Google Scholar 

  • Hertzog DE, Michalet X, Jager M, Kong X, Santiago JG, Weiss S, Bakajin O (2004) Femtomole mixer for microsecond kinetic studies of protein folding. Anal Chem 76:7169–7178

    Google Scholar 

  • Hessel V, Löwe H, Schönfeld F (2005) Micromixers—a review on passive and active mixing principles. Chem Eng Sci 60:2479–2501

    Google Scholar 

  • Hessel V, Hardt S, Löwe H, Schönfeld F (2003) Laminar mixing in different interdigital micromixers: I. Experimental characterization AIChE J 49:566–577

    Google Scholar 

  • Hoburg JF, Melcher JR (1976) Internal electrohydrodynamic instability and mixing of fluids with orthogonal field and conductivity gradients. J Fluid Mech 73:333–351

    MATH  Google Scholar 

  • Hoburg JF, Melcher JR (1977) Electrohydrodynamic mixing and instability induced by colinear fields and conductivity gradients. Phys Fluids 20: 903–911

    MATH  Google Scholar 

  • Huang M-Z, Yang R-J, Tai C-H, Tsai C-H, Fu L-M (2006) Application of electrokinetic instability flow for enhanced micromixing in cross-shaped microchannel. Biomed Microdevices 8:309–315

    Google Scholar 

  • Hunter RJ (1981) Zeta potential in colloid science: principles and applications. Academic, New York

    Google Scholar 

  • Ismagilov RF, Stroock AD, Kenis PJA, Whitesides GM, Stone HA (2000) Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flow in microchannels. Appl Phys Lett 76:2376–2378

    Google Scholar 

  • Jacobson SC, McKnight TE, Ramsey JM (1999) Microfluidic devices for electrokinetically driven parallel and serial mixing. Anal Chem 71:4455–4459

    Google Scholar 

  • Jacobson SC, Ramsey JM (1997) Electrokinetic focusing in microfabricated channel structures. Anal Chem 69:3212–3217

    Google Scholar 

  • Janasek D, Franzke J, Manz A (2006) Scaling and the design of miniaturized chemical-analysis systems. Nature 442:374–380

    Google Scholar 

  • Johnson TJ, Ross D, Locascio LE (2002) Rapid microfluidic mixing. Anal Chem 74:45–51

    Google Scholar 

  • Johnson TJ, Locascio LE (2002) Characterization of optimization of slanted well design for microfluidic mixing under electroosmotic flow. Lab Chip 2:135–140

    Google Scholar 

  • Jones TB (2005) Electromechanics of particles. Cambridge University Press, Cambridge

  • Kamholz AE, Weigl BH, Finlayson BA, Yager P (1999) Quantitative analysis of molecular interactive in microfluidic channel: the T-sensor. Anal Chem 71:5340–5347

    Google Scholar 

  • Knight JB, Vishwanath A, Brody JP, Austin RH (1998) Hydrodynamic focusing on a silicon chip: mixing nanoliters in microseconds. Phys Rev Lett 80:3863–3866

    Google Scholar 

  • Kohlheyer D, Besselink GAJ, Lammertink RGH, Schlautmann S, Unnikrishnan S, Schasfoort RBM (2005) Electro-osmotically controllable multi-flow microreactor. Microfluid Nanofluid 1:242–248

    Google Scholar 

  • Krishnamoorthy S, Feng J, Henry AC, Locascio LE, Hickman JJ, Sundaram S (2006) Simulation and experimental characterization of electroosmotic flow in surface modified channels. Microfluid Nanofluid 2:345–355

    Google Scholar 

  • Lastochkin D, Zhou R, Wang P, Ben Y, Chang H-C (2004) Electrokinetic micropump and micromixer design based on ac faradic polarization. J Appl Phys 96:1730–1733

    Google Scholar 

  • Lee CS, McManigill D, Wu CT, Patel B (1991) Factors affecting direct control of electroosmosis using an external electric field in capillary electrophoresis. Anal Chem 63:1519–1523

    Google Scholar 

  • Lee C-Y, Lee G-B, Fu L-M, Lee K-H, Yang R-J (2004) Electrokinetically driven active micro-mixers utilizing zeta potential variation induced by field effect. J Micromech Microeng 14:1392–1398

    Google Scholar 

  • Lee J, Moon H, Fowler J, Schoellhammer T, Kim C-J (2002) Electrowetting and electrowetting-on-dielectric for microscale liquid handling. Sens Actuators A 95:259–268

    Google Scholar 

  • Lee Y-K, Deval J, Tabling P, Ho C-M (2001) Chaotic mixing in electrokinetically and pressure driven micro flows. In: Proc 14th IEEE Workshop on MEMS, Interlaken, Switzerland, pp 483–486

  • Li D (2004) Electrokinetics in microfluidics. Elsevier Academic Press

  • Lin C-H, Fu L-M, Chien Y-S (2004a) Microfluidic T-form mixer utilizing switching electroosmotic flow. Anal Chem 76:5265–5272

    Google Scholar 

  • Lin H, Storey BD, Oddy MH, Chen C-H, Santiago JG (2004b) Instability of electrokinetic microchannel flows with conductivity gradients. Phys Fluids 16:1922–1935

    Google Scholar 

  • Lin J-L, Lee K-H, Lee G-B (2005) Active mixing inside microchannels utilizing dynamic variation of gradient zeta potentials. Electrophoresis 26:4605–4615

    Google Scholar 

  • Lin JZ, Zhang K, Li H-J (2006) Study on the mixing of fluid in curved microchannels with heterogeneous surface potentials. Chin Phys 15: 2688–2696

    Google Scholar 

  • Liu Y, Fanguy JC, Bledsoe JM, Henry CS (2000) Dynamic coating using polyelectrolyte multilayers for chemical control of electroosmotic flow in capillary electrophoresis microchips. Anal Chem 72:5939–5944

    Google Scholar 

  • Löb P, Drese KS, Hessel V, Hardt S, Hofmann C, Löwe H, Schenk R, Schönfeld F, Werner B (2004) Steering of liquid mixing speed in interdigital micro mixers—from very fast to deliberately slow mixing. Chem Eng Technol 27:340–345

    Google Scholar 

  • MacInnes JM (2002) Computation of reacting electrokinetic flow in microchannel geometries. Chem Eng Sci 57:4539–4558

    Google Scholar 

  • Mishchuk NA, Takhistov PV (1995) Electroosmosis of the second kind Colloids. Surf A 95:119–131

    Google Scholar 

  • Molho JI, Herr AE, Mosier B, Santiago JG, Kenny TW, Brennen RA, Gordon GB, Mohammadi (2001) Optimization of turn geometries for microchip electrophoresis. Anal Chem 73:1350–1360

    Google Scholar 

  • Moon H, Cho SK, Garrell RL, Kim C-J (2002) Low voltage electrowetting-on-dielectric. J Appl Phys 92:4080–4087

    Google Scholar 

  • Morgan H, Green NG (2003) AC elecrokinetics: colloids and nanoparticles. Research Studies Press

  • Mpholo M, Smith CG, Brown ABD (2003) Low voltage plug flow pumping using anisotropic electrode arrays. Sens Actuators B 92:262–268

    Google Scholar 

  • Ng ASW, Hau WLW, Lee Y-K, Zohar Y (2004) Electrokinetic generation of microvortex patterns in a microchannel liquid flow. J Micromech Microeng 14:247–255

    Google Scholar 

  • Nguyen N-T, Wu Z (2005) Micromixers—a review. J Micromech Microeng 15:R1–16

    Google Scholar 

  • Nguyen N-T, Huang X (2005) An analytical model for mixing based on time-interleaved sequential segmentation. Microfluid Nanofluid 1:373–375

    Google Scholar 

  • Niu X, Lee Y-K (2003) Efficient spatial-temporal chaotic mixing in microchannels. J Micromech Microeng 13:454–462

    Google Scholar 

  • Oddy MH, Santiago JG, Mikkelsen JC (2001) Electrokinetic instability micromixing. Anal Chem 73:5822–5832

    Google Scholar 

  • Okkels F, Tabeling P (2004) Spatiotemporal resonances in mixing of open viscous fluids. Phys Rev Lett 92:038301

    Google Scholar 

  • Ottino JM (1989) The kinematics of mixing: stretching, chaos, and transport. Cambridge University Press, Cambridge

  • Ottino JM, Wiggins S (2004a) Introduction: mixing in microfluidics. Phil Trans R Soc Lond A 362:923–935

    MATH  Google Scholar 

  • Ottino JM, Wiggins S (2004b) Designing optimal micromixers. Science 305:485–486

    Google Scholar 

  • Paik P, Pamula VK, Pollack MG, Fair RB (2003a) Electrowetting-based droplet mixers for microfluidic systems. Lab Chip 3:28–33

    Google Scholar 

  • Paik P, Pamula VK, Fair RB (2003b) Rapid droplet mixers for digital microfluidic systems. Lab Chip 3:253–259

    Google Scholar 

  • Park J, Shin SM, Huh KY, Kang IS (2005) Application of electrokinetic instability for enhanced mixing in various micro-T-channel geometries. Phys Fluids 17:118101

    Google Scholar 

  • Pollack L, Tate MW, Darnton NC, Knight JB, Gruner SM, Eaton WA, Austin RH (1999) Compactness of the denatured state of a fast-folding protein measured by submillisecond small-angle X-ray scattering. Proc Natl Acad Sci USA 96:10115–10117

    Google Scholar 

  • Posner JD, Santiago JG (2006) Convective instability of electrokinetic flows in a cross-shaped microchannel. J Fluid Mech 555:1–42

    MATH  Google Scholar 

  • Probstein RF (1994) Physicochemical hydrodynamics: an introduction. Wiely–Interscience, New York

    Google Scholar 

  • Psaltis D, Quake SR, Yang C (2006) Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442:381–386

    Google Scholar 

  • Qian S, Bau HH (2002) A chaotic electroosmotic stirrer. Anal Chem 74: 3616–3625

    Google Scholar 

  • Ramos A, Gonzalez A, Castellanos A, Green NG, Morgan H (2003) Pumping of liquids with AC voltages applied to asymmetric pairs of microelectrodes Phys Rev E 67:056302

    Google Scholar 

  • Ramos A, Morgan H, Green NG, Castellanos A (1999) AC electric-field-induced fluid flow in microelectrodes. J Colloid Interf Sci 217:420–422

    Google Scholar 

  • Ren L, Li D (2001) Electroosmotic flow in heterogeneous microchannels. J Colloid Interf Sci 243:255–261

    Google Scholar 

  • Sasaki N, Kitamori T, Kim H-B (2006) AC electroosmotic micromixer for chemical processing in a microchannel. Lab Chip 6:550–554

    Google Scholar 

  • Saville DA (1997) Electrohydrodynamics: the Taylor–Melcher leaky dielectric model. Annu Rev Fluid Mech 29:27–64

    Google Scholar 

  • Schasfoort RBM, Schlautmann S, Hendrikse J, Van den Berg A (1999) Field-effect flow control for microfabricated fluidic network. Science 286:942–945

    Google Scholar 

  • Schönfeld F, Hessel V, Hofmann C (2004) An optimised split-and-recombine micro-mixer with uniform ‘chaotic’ mixing. Lab Chip 4:65–69

    Google Scholar 

  • Shin SM, Kang IS, Cho Y-K (2005) Mixing enhancement by using electrokinetic instability under time-periodic electric field. J Micromech Microeng 15:455–462

    Google Scholar 

  • Sinton D (2004) Microscale flow visualization. Microfluid Nanofluid 1:2–21

    Google Scholar 

  • Song H, Bringer MR, Tice JD, Gerdts C J, Ismagilov RF (2003) Experimental test of scaling of mixing by chaotic advection in droplets moving through microfluidic. Appl Phys Lett 83:4664–4666

    Google Scholar 

  • Sprott JC (2003) Chaos and time-series analysis. Oxford University Press, Oxford

  • Squires TM, Bazant MZ (2004) Induced-charge electroosmosis. J Fluid Mech 509:217–252

    MATH  Google Scholar 

  • Squires TM, Quakes SR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77:977–1026

    Google Scholar 

  • Stone HA, Stroock AD, Ajdari A (2004) Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu Rev Fluid Mech 36:381–411

    Google Scholar 

  • Stroock AD, Dertinger SKW, Ajdari A, Mezic I, Stone HA, Whitesides GM (2002a) Chaotic mixer for microchannels. Science 295:647–651

    Google Scholar 

  • Stroock AD, Detinger SKW, Whitesides GM, Ajdari A (2002b) Patterning flows using grooved surfaces. Anal Chem 74:5306–5312

    Google Scholar 

  • Stroock AD, Weck M, Chiu DT, Huck WTS, Kenis PJA, Ismagilov RF, Whitesides GM (2000) Patterning electro-osmotic flow with patterned surface charge. Phys Rev Lett 84:3314–3317

    Google Scholar 

  • Stroock AD, Whitesides GM (2003) Controlling flows in microchannels with patterned surface charge and topography. Acc Chem Res 36:597–604

    Google Scholar 

  • Studer V, Pepin A, Chen Y, Ajdari A (2002) Fabrication of microfluidic devices for AC electrokinetic fluid pumping. Microelec Eng 61–2: 915–920

    Google Scholar 

  • Succi S (2001) The lattice Boltzmann equation: for fluid dynamics and beyond. Oxford University Press, Oxford

  • Suresh V, Homsy GM (2004) Stability of time-modulated electroosmotic flow. Phys Fluids 16:2349–2356

    Google Scholar 

  • Suzuki H, Ho C-M, Kasagi N (2004) A chaotic mixer for magnetic bead-based micro cell sorter. J Microelectromech Syst 13:779–790

    Google Scholar 

  • Tai C-H, Yang R-J, Huang M-Z, Liu C-W, Tsai C-H, Fu L-M (2006) Micromixer utilizing electrokinetic instability-induced shedding effect. Electrophoresis 27:4982–4990

    Google Scholar 

  • Tang GH, Li Z, Wang JK, He YL, Tao WQ (2006) Electroosmotic flow mixing in microchannels with the lattice Boltzmann method. J Appl Phys 100:094908

    Google Scholar 

  • Tang Z, Hong S, Djukic D, Modi V, West AC, Yardley J, Osgood RM (2002) Electrokinetic flow control for composition modulation in a microchannel. J Micromech Microeng 12:870–877

    Google Scholar 

  • Thamida SK, Chang, H-C (2002) Nonlinear electrokinetic ejection and entrainment due to polarization at nearly insulated wedges. Phys Fluids 14:4315–4328

    Google Scholar 

  • Tian F, Li B, Kwok DY (2005) Tradeoff between mixing and transport for electroosmotic flow in heterogeneous microchannels with nonuniform surface potentials. Langmuir 21:1126–1131

    Google Scholar 

  • Wang JK, Wang M, Li ZX (2005a) Lattice Boltzmann simulations of mixing enhancement by the electroosmotic flow in microchannels. Mod Phys Lett B 19:1515–1518

    MATH  Google Scholar 

  • Wang JK, Wang M, Li ZX (2006a) Lattice Poisson–Boltzmann simulations of electro-osmotic flows in microchannels. J Colloid Interf Sci 296:729–736

    Google Scholar 

  • Wang S-C, Chen H-P, Lee C-Y, Yu C-C, Chang H-C (2006b) AC electro-osmotic mixing induced by non-contact external electrodes. Biosens Bioelectron 22:563–567

    Google Scholar 

  • Wang S-C, Lai Y-W, Ben Y, Chang H-C (2004) Microfluidic mixing by dc and ac nonlinear electrokinetic vortex flows. Ind Eng Chem Res 43:2902–2911

    Google Scholar 

  • Wang Y, Lin Q, Mukherjee T (2005b) A model for laminar diffusion-based complex electrokinetic passive micromixers. Lab Chip 5:877–887

    Google Scholar 

  • Whitesides GM (2006) The origions and the future of microfluidics. Nature 442:368–373

    Google Scholar 

  • Wiggins S, Ottino JM (2004) Foundations of chaotic mixing. Phil Trans R Soc Lond A 362:937–970

    MATH  Google Scholar 

  • Wolf A, Swift JB, Swinney HL, Vastano J A (1985) Determining Lyapunov exponents from a time series. Physica D 16:285–317

    MATH  Google Scholar 

  • Wu C-H, Yang R-J (2006) Improving the mixing performance of side channel type micromixers using an optimal voltage control model. Biomed Microdevices 8:119–131

    Google Scholar 

  • Wu H-Y, Liu C-H (2005) A novel electrokinetic mixer. Sens Actuators A 118:107–115

    Google Scholar 

  • Yager P, Edwards T, Fu E, Helton K, Nelson K, Tam MR, Weigl BH (2006) Microfluidic diagnostic technologies for global public health. Nature 442(7101):412–418

    Google Scholar 

  • Yang R-J, Chang C-C (2004) Enhancement of electrokinetically-driven flow mixing in 3-D microchannels using heterogeneous surfaces. IMECE’04: Anaheim, California, USA, IMECE2004–61441

  • Yang R-J, Chang C-C, Huang S-B, Lee G-B (2005) A new focusing model and switching approach for electrokinetic flow inside microchannels. J Micromech Microeng 15:2141–2148

    Google Scholar 

  • Yossifon G, Frankel I, Miloh T (2006) On electro-osmotic flows through microchannel junctions. Phys Fluids 18:117108

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruey-Jen Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, CC., Yang, RJ. Electrokinetic mixing in microfluidic systems. Microfluid Nanofluid 3, 501–525 (2007). https://doi.org/10.1007/s10404-007-0178-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-007-0178-z

Keywords

Navigation