Simulation and parametric study of a novel multi-spray emitter for ESI–MS applications

Abstract

In this work, we propose a novel carbon nanofiber (CNF) emitter for electrospray ionization (ESI)–mass spectrometry (MS) applications. The proposed emitter comprises an array of CNFs around the orifice of a microscale capillary. The electrospray ionization process is simulated using a CFD code based on Taylor–Melcher leaky-dielectric formulations for solving the electrohydrodynamics and volume-of-fluid (VOF) method for tracking the interface. The code is validated for a conventional multiple electrospray emitter and then applied to simulate the CNF emitter model. The modeling results show that under steady state condition, individual cone-jets are established around each of the CNFs resulting in an array of electrosprays. The approach being taken to fabricate the CNF emitter is briefly discussed. Effects of geometrical parameters including aspect ratio of CNFs, total number of CNFs and distribution pattern of the CNFs on the electrospray performance are studied. The influence of operating parameters such as flow rate, potential difference and physical properties of the solvent on the electrospray behavior is thoroughly investigated. The spray current, ‘onset’ potential and jet diameter are correlated with total number and distribution of CNFs and physical properties of the liquid. The correlation results are compared with the available results in the literature. Higher spray current and lower jet diameter indicate that the device can perform equivalent to nanospray emitters while using a micro-scale orifice. This allows higher sample throughput and eliminates potential clogging problem inherent in nano-capillaries.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35

References

  1. Amekinders JC, Jones C (1999) Multiple jet electrohydrodynamic spraying and applications. J Aerosol Sci 30:969–971

    Article  Google Scholar 

  2. Amirkhani, A, Wetterhall M, Nilsson S, Danielsson R, Bergquist, J (2004) Comparison between different seathless electrospray emitter configurations regarding the performance of nanoscale liquid chromatography-time-of-flight mass spectrometric analysis. J Chromatogr A 1033:257–266

    Article  Google Scholar 

  3. Arscott S, Le Gac S, Druon C, Tabourier P, Rolando C (2004)A planar micro-nib interface for nanoESI-MS microfluidic applications. J Micromech Microeng 14:310–316

    Article  Google Scholar 

  4. Bocanegra R, Barrero A, Loscertales IG, Marquez M (2003) Multiplexing electrosprays emitted from an array of holes. In: 56th annual meeting of the division of fluid dynamics, Bull Am Phys Soc 48

  5. Castellanos A (1998) Basic concepts and equations in electrohydrodynamics. In: Electrohydrodynamics, Springer, Berlin Heidelberg New York

  6. Chhowalla M, Teo KBK, Ducati C, Rupesinghe NL, Amaratunga GAJ, Ferrari AC, Roy D, Robertson, J, and Milne WIJ (2001) Growth process conditions of vertically aligned carbon nanofibers using plasma enhanced chemical vapor deposition. Appl Phys Lett 90:5308

    Google Scholar 

  7. Clegg GA, Dole M (1971) Molecular beams of macroions. 3. Zein and polyvinylpyrrolidone. Biopolymers 10(5):821–826

    Article  Google Scholar 

  8. Cloupeau M, Prunet-Foch B (1989) Electrostatic spraying of liquids in cone-jet mode. J Electrostat 22:135–59

    Article  Google Scholar 

  9. De la Mora FJ, Loscertales IG (1994) The current emitted by highly conducting Taylor cones. J Fluid Mech 260: 155–184

    Google Scholar 

  10. Deng W, Li X, Klemic J, Reed M, Gomez A (2006) Increase of electrospray throughput using multiplexed microfabricated sources for the generation of monodisperse droplets. J Aerosol Sci 37:696–714

    Article  Google Scholar 

  11. Dole M, Mack LL, Hines RL, Mobley RC, Ferguson LD, Alice MB (1968) Molecular beams of macroions. J Chem Phys 49:2240–2249

    Article  Google Scholar 

  12. Duby MH, Deng W, Kim K, Gomez T, Gomez A (2006) Stabilization of monodisperse electrosprays in the multi-jet mode via electric field enhancement. J Aerosol Sci 37(3):306–322

    Article  Google Scholar 

  13. Ebbesen TW, Ajayan PM (1992) Large-scale synthesis of carbon nanofibers. Nature (London) 358:220

    Article  Google Scholar 

  14. Fenn, JB, Mann M, Meng CK, Wong SF, Whitehouse CM(1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246:64–71

    Article  Google Scholar 

  15. Ganan-Calvo AM (1997) Cone–jet analytical extension of Taylor’s electrostatic solution and the asymptotic universal scaling laws in electrospraying. Phys Rev Lett 79:217–220

    Article  Google Scholar 

  16. Ganan–Calvo AM, Davila J, Barrero A (1997) Current and droplet size in the electrospraying of liquids. Scaling laws. J Aerosol Sci 28:249–275

    Article  Google Scholar 

  17. Griss P, Melin J, Sjodahl J, Rocraade J, Stemme G (2002) Development of micromachined hollow tips for protein analysis based on nanoelectrospray ionization mass spectrometry. J Micromech Microeng 12:682–687

    Article  Google Scholar 

  18. Hartman RPA, Brunner DJ, Camelot DMA, Marijnissen JCM and Scarlett B (1999) Electrohydrodynamic atomization in the cone-jet mode physical modeling of the liquid cone and jet. J Aerosol Sci 30:823–49

    Article  Google Scholar 

  19. Higuera FJ (2004) Current/flow–rate characteristic of an electrospray with a small meniscus. J Fluid Mech 513:239–46

    MATH  Article  Google Scholar 

  20. Hirt CW, Nichols BD (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39:201–225

    MATH  Article  Google Scholar 

  21. Hofmann S, Ducati C, Kleinsorge B, and Robertson J (2003) Low-temperature growth of carbon nanofibers by plasma-enhanced chemical vapor deposition. Appl Phys Lett 83:135–137

    Article  Google Scholar 

  22. Hofmann S, Ducati C, Kleinsorge B, Robertson J (2003) Direct growth of aligned carbon nanofiber field emitter arrays onto plastic substrates. Appl Phys Lett 83(22):4661–4663

    Article  Google Scholar 

  23. Huberman MN, Beynon JC, Cohen E, Goldin DS, Kidd PW, Zafran S (1968) Present status of colloid microthruster technology. J Spacecr Rockets 5:1319–1324

    Article  Google Scholar 

  24. J Liu, KW Ro, R Nayak, DR Knapp (2006) Monolithic column plastic microfluidic device for peptide analysis using electrospray from a channel opening on the edge of the device. Int J Mass Spectrom (in press)

  25. Jian L, Kyung WR, Mark B, and Knapp DR (2004) Electrospray Ionization with a pointed carbon fiber emitter. Anal Chem 76:3599–3606

    Article  Google Scholar 

  26. Kaiser S, Kyritsis DC, Dobrowolski P, Long MB, Gomez A (2003) The electrospray and combustion at the mesoscale. J Mass Spectrom 51(1):42–49

    Google Scholar 

  27. Kim JS, Knapp DR (2001) Microfabrication of polydimethylsiloxane electrospray ionization emitters. J Chromatogr A 924:137–145

    Article  Google Scholar 

  28. Melcher J R (1981) Continuum electromechanics. MIT Press, Cambridge

  29. Melechko AV, McKnight TE, Hensley DK, Guillorn MA, Borisevich AY, Merkulov VI, Lowndes DH, Simpson ML (2003) Large scale synthesis of high-aspect-ratio rigid vertically aligned carbon nanofibers. Nanotechnology 14:1029–1035

    Article  Google Scholar 

  30. Merkulov VI, Lowndes DH, Wei YY, Eres G, and Voelkl E (2000) Patterned growth of individual and multiple vertically aligned carbon nanofibers. Appl Phys Lett 76:3555

    Article  Google Scholar 

  31. Regele JD, Papac MJ, Rickard MJA, Dunn-Rankin D (2002) Effects of capaillary spacing on EHD spraying from an array of cone jets. J Aerosol Sci 33:1471–1479

    Article  Google Scholar 

  32. Ren ZF, Huang ZP, Xu JW, Wang JH, Bush P, Siegal MP, Provencio PN (1998) Synthesis of large arrays of well-aligned carbon nanofibers on thermoplastic. Science 282:1105–1107

    Article  Google Scholar 

  33. Rulison AJ, Flagan R (1993) Scale-up of electrospray atomization using linear arrays of Taylor cones. Rev Sci Instrum 64:683–686

    Article  Google Scholar 

  34. Ryu K, Kang M, Kim Y, Jeon H (2003) Low temperature growth of carbon nanotube by plasma-enhanced chemical vapor deposition using nickel catalyst. Jpn J Appl Phys 42:3578–3581

    Article  Google Scholar 

  35. Saville DA (1997) Electrohydrodynamcis: the Taylor–Melcher leaky dielectric model. Annu Rev Fluid Mech 29:27–64

    Article  MathSciNet  Google Scholar 

  36. Schultz GA, Corso TN (2000) Proceedings of the 47th ASMS Conference on mass spectrometry and allied topics, Long Beach

  37. Sen AK, Darabi J, Knapp DR, Liu J (2006) Modeling and characterization of a carbon fiber emitter for electrospray ionization. J Micromech Microeng 16:620–630

    Article  Google Scholar 

  38. Tang K, Lin Y, Matson DW, Kim T, Smith RD (2001) Generation of multiple electrosprays using microfabricated emitter arrays for improved mass spectrometric sensitivity. Anal Chem 73:1658–1663

    Article  Google Scholar 

  39. Thess A, Lee R, Nikolaev DH, Petit P, Robert J, Xu C, Lee YH, Kim SG, Rinzler AG, Colbert DT, Scuseria GE, Tomanek D, Fischer JE, Smalley RE (1996) Crystalline ropes of metallic carbon nanofibers. Science 273: 483

    Article  Google Scholar 

  40. Trapp O, Pearce EW, Kimmel JR, Yoon OK, Zuleta IA, Zare RN (2005) A soft on-column metal coating procedure for robust seathless electrospray emitters used in capillary electrophoresis-mass spectrometry. Electrophoresis 26:1358–1365

    Article  Google Scholar 

  41. Wang XQ, Desai A, Tai YC, Licklider L, Lee TD (1999) Polymer based electrospray chips for mass spectrometry. In: Proceedings of the IEEE micro electro mechanical systems (MEMS), Orlando, pp 523–528

  42. Wang YX, Cooper JW, Lee CS, DeVoe DL (2004) Efficient electrospray ionization from polymer microchannels using integrated hydrophobic membranes. Lab Chip 4:363–367

    Article  Google Scholar 

  43. Yoon SS, Heister SD, Epperson JT, Sojka PE (2001) Modeling multi-jet mode electrostatic atomization using boundary element methods. J Electrostatics 50(2):91–108

    Article  Google Scholar 

  44. Zeleny J (1914) Phys Rev 3:69–91

    Article  Google Scholar 

  45. Zeleny J (1917) Phys Rev 10:1–6

    Article  Google Scholar 

Download references

Acknowledgments

Supported in part by a grant from the University of South Carolina Research and Productive Scholarship Fund, NIH grant CA86285 and the NHLBI proteomics Initiative via contract N01-HV-28181 (D.R.K.).

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. Darabi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sen, A.K., Darabi, J. & Knapp, D.R. Simulation and parametric study of a novel multi-spray emitter for ESI–MS applications. Microfluid Nanofluid 3, 283–298 (2007). https://doi.org/10.1007/s10404-006-0122-7

Download citation

Keywords

  • Carbon nanofiber
  • Electrospray ionization–mass spectrometry
  • Taylor–Melcher leaky-dielectric formulations
  • Electrohydrodynamics
  • Volume of fluid