Skip to main content
Log in

Control of serial microfluidic droplet size gradient by step-wise ramping of flow rates

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

This paper describes a method to control and detect droplet size gradient by step-wise flow rate ramping of water-in-oil droplets in a microfluidic device. The droplets are generated in a cross channel device with two oil inlets and a water inlet. The droplet images are captured and analyzed in a time sequence in order to quantify the droplet generation frequency. It is demonstrated that by controlling the ramping of the oil flow rates it is possible to manipulate the ramping of droplet sizes. Increasing or decreasing of droplet sizes is achieved for a step-wise triangular ramping profile of the oil flow rate. The dynamic behavior of droplets due to the step-wise flow pulses is investigated. Uniform linear size ramping of water-in-oil droplets from 73 to 83 μm in diameter is generated with an oil flow ramping range from 1 to 11 μL/min in a minimum of five steps while water flow rate is held constant at 2 μL/min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anna SL, Bontoux N, Stone HA (2003) Formation of dispersions using “flow focusing” in microchannels. Appl Phys Lett 82(3):364–366

    Article  Google Scholar 

  • Bringer MR, Gerdts CJ, Song H, Tice JD, Ismagilov RF (2004) Microfluidic systems for chemical kinetics that rely on chaotic mixing in droplets. Philos T Roy Soc A 362(1818):1087–1104

    Article  Google Scholar 

  • Chao W-C, Collins J, Bachman M, Li GP, Lee AP (2004) Droplet arrays in microfluidic channels for combinatorial screening assays. Hilton Head 2004: A solid state sensor, Actuator and Microsystems Workshop, Hilton Head

  • Chen DL, Gerdts CJ, Ismagilov RF (2005) Using microfluidics to observe the effect of mixing on nucleation of protein crystals. J Am Chem Soc 127(27):9672–9673

    Article  Google Scholar 

  • Collins J, Lee AP (2004) Detection and analysis of high speed droplet generation in a microfluidic device. ASME International Mechanical Engineering Congress and R&D Expo 2004, Anaheim, CA, ASME

  • Dendukuri D, Tsoi K, Hatton TA, Doyle PS (2005) Controlled synthesis of nonspherical microparticles using microfluidics. Langmuir 21(6):2113–2116

    Article  Google Scholar 

  • Drenckhan W, Cox SJ, Delaney G, Holste H, Weaire D, Kern N (2005) Rheology of ordered foams—on the way to Discrete microfluidics. Colloid Surface A 263(1–3):52–64

    Article  Google Scholar 

  • Duffy DC, McDonald JC, Schueller OJA, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70:4974–4984

    Article  Google Scholar 

  • Fouillet Y, Achard JL (2004) Digital microfluidic and biotechnology. Cr Phys 5(5):577–588

    Article  Google Scholar 

  • Gneist G, Bart HJ (2002) Droplet formation in liquid/liquid systems using high frequency AC fields. Chem Eng Technol 25(2):129–133

    Article  Google Scholar 

  • Govor LV, Parisi J, Bauer GH, Reiter G (2005) Instability and droplet formation in evaporating thin films of a binary solution. Phys Rev E 71(5):051603

    Article  Google Scholar 

  • de Heij B, Daub M, Gutmann O, Niekrawietz R, Sandmaier H, Zengerle R (2004) Highly parallel dispensing of chemical and biological reagents. Anal Bioanal Chem 378(1):119–122

    Article  Google Scholar 

  • Kohler JM, Kirner T (2005) Nanoliter segment formation in micro fluid devices for chemical and biological micro serial flow processes in dependence on flow rate and viscosity. Sensor Actuat a-Phys 119(1):19–27

    Article  Google Scholar 

  • Kuksenok O, Jasnow D, Yeomans J, Balazs AC (2003) Periodic droplet formation in chemically patterned microchannels. Phys Rev Lett 91(10):108303

    Article  Google Scholar 

  • Lyuksyutov IF, Naugle DG, Rathnayaka KDD (2004) On-chip manipulation of levitated femtodroplets. Appl Phys Lett 85(10):1817–1819

    Article  Google Scholar 

  • Neugebauer S, Evans SR, Aguilar ZP, Mosbach M, Fritsch I, Schuhmann W (2004) Analysis in ultrasmall volumes: microdispensing of picoliter droplets and analysis without protection from evaporation. Anal Chem 76(2):458–463

    Article  Google Scholar 

  • Nguyen N-T, Lassemono S, Chollet FA (2006) Optical detection for droplet size control in microfluidic droplet-based analysis systems. Sens Actuators B: in print. DOI:10.1016/j.snb.2005.12.010

  • Nisisako T, Torii T, Higuchi T (2002) Droplet formation in a microchannel network. Lab Chip 2(1):24–26

    Article  Google Scholar 

  • Omrane A, Santesson S, Alden M, Nilsson S (2004) Laser techniques in acoustically levitated micro droplets. Lab Chip 4(4):287–291

    Article  Google Scholar 

  • Phou T, Jugieu D, Gue AM (2003) Design and realization of an ejectors micro-array for in-situ oligonucleotide synthesis on DNA chip. Houille Blanche (5):97–103

  • Seo M, Nie ZH, Xu SQ, Lewis PC, Kumacheva E (2005) Microfluidics: from dynamic lattices to periodic arrays of polymer disks. Langmuir 21(11):4773–4775

    Article  Google Scholar 

  • Srinivasan V, Pamula VK, Fair RB (2004) Droplet-based microfluidic lab-on-a-chip for glucose detection. Anal Chim Acta 507(1):145–150

    Article  Google Scholar 

  • Sugiura S, Nakajima M, Iwamoto S, Seki M (2001) Interfacial tension driven monodispersed droplet formation from microfabricated channel array. Langmuir 17(18):5562–5566

    Article  Google Scholar 

  • Sugiura S, Oda T, Izumida Y, Aoyagi Y, Satake M, Ochiai A, Ohkohchi N, Nakajima M (2005) Size control of calcium alginate beads containing living cells using micro-nozzle array. Biomaterials 26(16):3327–3331

    Article  Google Scholar 

  • Tan Y-C, Cristini V, Lee AP (2006) Monodispersed microfluidic droplet generation by shear focusing microfluidic device. Sens Actuators B 114(1):350–356

    Article  Google Scholar 

  • Tice JD, Song H, Lyon AD, Ismagilov RF (2003) Formation of droplets and mixing in multiphase microfluidics at low values of the Reynolds and the capillary numbers. Langmuir 19(22):9127–9133

    Article  Google Scholar 

  • Tsuru T, Tamiya KI, Nishikata A (2004) Formation and growth of micro-droplets during the initial stage of atmospheric corrosion. Electrochim Acta 49(17–18):2709–2715

    Article  Google Scholar 

  • Wheeler AR, Moon H, Kim CJ, Loo JA, Garrell RL (2004) Electrowetting-based microfluidics for analysis of peptides and proteins by matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem 76(16):4833–4838

    Article  Google Scholar 

  • Wheeler AR, Moon H, Bird CA, Loo RRO, Kim CJ, Loo JA, Garrell RL (2005) Digital microfluidics with in-line sample purification for proteomics analyses with MALDI-MS. Anal Chem 77(2):534–540

    Article  Google Scholar 

  • Yogi O, Kawakami T, Yamauchi M, Ye JY, Ishikawa M (2001) On-demand droplet spotter for preparing pico- to femtoliter droplets on surfaces. Anal Chem 73(8):1896–1902

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge Lung-Hsin Hung and Wei-Yu Tseng, graduate students in the BioMINT lab, UC Irvine for helping with the fabrication, Daphne Collins, Brain Imaging Center, UCI for preliminary image analysis and start up funding from UCI. Startup funding from UC Irvine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abraham Phillip Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collins, J., Lee, A.P. Control of serial microfluidic droplet size gradient by step-wise ramping of flow rates. Microfluid Nanofluid 3, 19–25 (2007). https://doi.org/10.1007/s10404-006-0093-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-006-0093-8

Keywords

Navigation