Skip to main content
Log in

Simulation and experimental characterization of electroosmotic flow in surface modified channels

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Covalent surface modification techniques, in particular surface oxidation procedures, have been employed as a mean to modify polymer microfluidic channels for the purpose of modulating microflow. The focus of this work is to experimentally and computationally characterize electroosmotic flow (EOF) to understand the impact of surface modifications and buffer pH on sample mixing and dispersion. The experimental results are used to calibrate and validate the simulation model that solves the Navier–Stokes equation for fluid flow and Poisson equation to resolve external electric field. Experimental and simulated results are presented for hybrid microfluidic systems, consisting of both pristine polymer surfaces and chemically modified polymer surfaces. The results show that the selective surface modification induces hydrodynamic pressure gradient, leading to enhanced sample dispersion. The mass flow rate increases linearly with the level of oxidation. All channels (pristine, oxidized, and hybrid) showed an increasing EOF with increasing pH until the near neutral regime (7<pH<9), where the EOF leveled off at a maximum value—behavior that is typical of a microchannel with negative surface moieties populating its surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Anonymous (2004) CFDACE+ User Manual. ESI-CFD, Inc., Huntsville, AL, USA

  • Arulanandam S, Li D (2000) Liquid transport in rectangular microchannels by electroosmotic pumping. Colloid Surface A Physicochemical Eng Aspects 161(1):89–102

    Article  Google Scholar 

  • Barker SLR, Ross D, Tarlov MJ, Gaitan M, Locascio LE (2000a) Control of flow direction in microfluidic devices with polyelectrolyte multilayers. Anal Chem 72(24):5925–5929

    Article  PubMed  Google Scholar 

  • Barker SLR, Tarlov MJ, Canavan H, Hickman JJ, Locascio LE (2000b) Plastic microfluidic devices modified with polyelectrolyte multilayers. Anal Chem 72(20):4899–4903

    Article  PubMed  Google Scholar 

  • Bianchi F, Ferrigno R, Girault HH (2000) Finite element simulation of an electroosmotic-driven flow division at a T-junction of microscale dimensions. Anal Chem 72(9):1987–1993

    Article  PubMed  Google Scholar 

  • Chen Z, Athavale M, Przekwas A (2003) Numerical simulation of electroosmotic flow in micro channels with analytical integration of surface potential, vol 1. In: Proceedings of the 2003 nanotechnology conference and trade show- nanotech, San Francisco, CA, United States. Computational Publications, Cambridge, pp 186–189

  • Culbertson CT, Jacobson SC, Ramsey JM (1998) Dispersion sources for compact geometries on microchips. Anal Chem 70(18):3781–3789

    Article  Google Scholar 

  • Dutta D, Leighton DT Jr (2001) Dispersion reduction in pressure-driven flow through microetched channels. Anal Chem 73(3):504–513

    Article  PubMed  Google Scholar 

  • Dutta P, Beskok A, Warburton TC (2002a) Electroosmotic flow control in complex microgeometries. J Microelectromech Syst 11(1):36–44

    Article  Google Scholar 

  • Dutta P, Beskok A, Warburton TC (2002b) “Numerical simulation of mixed electroosmotic/pressure driven microflows”. Numer Heat Transf A Appl 41(2):131–148

    Article  Google Scholar 

  • Erickson D, Li D (2002) Influence of surface heterogeneity on electrokinetically driven microfluidic mixing. Langmuir 18(5): 1883–1892

    Article  Google Scholar 

  • Ermakov SV, Jacobson SC, Ramsey JM (2000) Computer simulations of electrokinetic injection techniques in microfluidic devices. Anal Chem 72(15):3512–3517

    Article  PubMed  Google Scholar 

  • Feng JJ, Krishnamoorthy S, Sundaram S, Bharadwaj R, Santiago JG (2003) Numerical simulation of field amplified sample stacking in microfluidic system, vol 1. In: Proceedings of the 2003 nanotechnology conference and trade show- nanotech, San Francisco, CA, United States. Computational Publications, Cambridge, pp 234–237

  • Ghosal S (2002) Band broadening in a microcapillary with a stepwise change in the ζ-potential. Anal Chem 74(16):4198

    Article  PubMed  Google Scholar 

  • Ghosal S (2004) Fluid mechanics of electroosmotic flow, its effect on band broadening in capillary electrophoresis. Electrophoresis 25(2):214–228

    Article  PubMed  MathSciNet  Google Scholar 

  • Gitlin I, Stroock AD, Whitesides GM, Ajdari A (2003) Pumping based on transverse electrokinetic effects. Appl Phys Lett 83(7):1486–1487

    Article  Google Scholar 

  • Henry AC, Tutt TJ, Galloway M, Davidson YY, McWhorter CS, Soper SA, McCarley RL (2000a) Surface modification of poly(methyl methacrylate) used in the fabrication of microanalytical devices. Anal Chem 72(21):5331–5337

    Article  PubMed  Google Scholar 

  • Henry AC, Waddell E, Shreiner R, Locascio LE (2002b) Control of electroosmotic flow in laser ablated, chemically modified hot imprinted polymer microchannels. Electrophoresis 23(5):791–798

    Article  PubMed  Google Scholar 

  • Herr AE, Molho JI, Santiago JG, Mungal MG, Kenny TW, Garguilo MG (2000) Electroosmotic capillary flow with nonuniform zeta potential. Anal Chem 72(5):1053–1057

    Article  PubMed  Google Scholar 

  • Hlushkou D, Seidel-Morgenstern A, Tallarek U (2005) Numerical analysis of electroosmotic flow in dense regular, random arrays of impermeable, nonconducting spheres. Langmuir 21(13):6097–6112

    Article  PubMed  Google Scholar 

  • Hunter R (1981) Zeta potential in colloid science. Academic, New York

    Google Scholar 

  • Johnson TJ, Ross D, Gaitan M, Locascio LE (2001) Laser modification of preformed polymer microchannels: application to reduce band broadening around turns subject to electrokinetic flow. Anal Chem 73(15):3656–3661

    Article  PubMed  Google Scholar 

  • Keh HJ, Anderson JL (1985) Boundary effects on electrophoretic motion of colloidal spheres. J Fluid Mech 153:417

    Article  MATH  Google Scholar 

  • Krishnamoorthy S, Giridharan MG (2000) Analysis of sample injection and band-broadening in capillary electrophoresis microchips, In: Proceedings of the 2000 International conference on modeling and simulation of mcrosystems - MSM, San Diego, CA, United States. Computational Publications, Cambridge, pp 528–531

  • Krishnamoorthy S, Feng JJ, Makhijani VB (2001) Analysis of sample transport in capillary electrophoresis microchip using full-scale numerical analysis, In: Proceedings of the 2001 International Conference on Modeling and Simulation of Microsystems - MSMHilton Head Island, SC, United States. Computational Publications, Cambridge, pp 206–209

  • Locascio LE, Henry AC, Johnson TJ, Ross DJ (2003) Surface chemistry in polymer microfluidic systems. Lab-On-A-Chip: miniaturized systems for (bio) chemical analysis and synthesis. In: Edwin Oosterbroek, van den Berg (eds) Elsevier Science, Amsterdam

  • Lee JSH, Hu Y, Li D (2005a) Electrokinetic concentration gradient generation using a converging-diverging microchannel. Analytica Chimica Acta 543(1–2):99–108

    Article  Google Scholar 

  • Lee JSH, Ren CL, Li D (2005b) Effects of surface heterogeneity on flow circulation in electroosmotic flow in microchannels. Analytica Chimica Acta 530(2):273

    Article  Google Scholar 

  • Long D, Stone HA, Ajdari A (1999) Electroosmotic flows created by surface defects in capillary electrophoresis. J Colloid Interface Sci 212(2):338

    Article  PubMed  Google Scholar 

  • Mitchell P (2001) Microfluidics—downsizing large-scale biology to what extent has microfluidics technology fulfilled life science researchers’ expectations of creating a viable ”lab-on-a-chip“? Nat Biotechnol 19(8):717–721

    Article  PubMed  Google Scholar 

  • Mitchell MJ, Qiao R, Aluru NR (2000) Meshless analysis of steady-state electro-osmotic transport. J Microelectromech Syst 9(4):435–449

    Article  Google Scholar 

  • Patankar SV (1980) Numerical heat transfer and fluid flow. McGraw-Hill, New York

    MATH  Google Scholar 

  • Patankar NA, Hu HH (1998) Numerical simulation of electroosmotic flow. Anal Chem 70(9):1870–1881

    Article  Google Scholar 

  • Probstein RF (2003) Physicochemical hydrodynamics: an introduction. Wiley, New York

    Google Scholar 

  • Ramos A, Morgan H, Green NG, Castellanos A (1998) Ac electrokinetics: a review of forces in microelectrode structures. J Phys D Appl Phys 31(18):2338–2353

    Article  Google Scholar 

  • Saville DA (1977) Electrokinetic effects with small particles. Ann Rev Fluid Mech 9:321–337

    Article  Google Scholar 

  • Schasfoort RBM, Schlautmann S, Hendrikse J, van den Berg A (1999) Field-effect flow control for microfabricated fluidic networks. Science 286(5441):942–945

    Article  PubMed  Google Scholar 

  • Stratton JA (1941) Electromagnetic theory. McGraw-Hill Companies, New York

    MATH  Google Scholar 

  • Stroock AD, Weck M, Chiu DT, Huck WTS, Kenis PJA, Ismagilov RF, Whitesides GM (2000) Patterning electro-osmotic flow with patterned surface charge. Phys Rev Lett 84(15):3314–3317

    Article  PubMed  Google Scholar 

  • Tang GY, Yang C, Chai CK, Gong HQ (2004) Numerical analysis of the thermal effect on electroosmotic flow and electrokinetic mass transport in microchannels. Analytica Chimica Acta 507(1):27

    Article  Google Scholar 

  • White FM (1991) Viscous fluid flow. New York, NY

  • Yang C, Li D (1998) Analysis of electrokinetic effects on the liquid flow in rectangular microchannels. Colloid Surface A Physicochemical Eng Aspects 143(2–3):339–353

    Article  Google Scholar 

  • Yates DE, SL, Healy TW (1974) Site-binding model of electrical double layer at the oxide/water interface. J Chem Soc Faraday Trans 74:1807–1818

Download references

Acknowledgments

The authors gratefully acknowledge support from DARPA/DSO under the SYMBIOSIS program (Project Monitor: Dr. Anantha Krishnan). A.C.H. would like to acknowledge the support of the National Research Council/National Institute of Standards and Technology Post-Doctoral Research Program. Certain commercial equipment, instruments, or materials are identified in this report to specify adequately the experimental procedure. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Krishnamoorthy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krishnamoorthy, S., Feng, J., Henry, A.C. et al. Simulation and experimental characterization of electroosmotic flow in surface modified channels. Microfluid Nanofluid 2, 345–355 (2006). https://doi.org/10.1007/s10404-006-0077-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-006-0077-8

Keywords

Navigation