Theoretical and experimental characterization of a low-Reynolds number split-and-recombine mixer

Abstract

A mixing device based on the split-and-recombine (SAR) principle is characterized using both theoretical and experimental methods. The theoretical model relies on solving a 1D diffusion equation in a frame of reference comoving with the flow, thus avoiding the usual numerical artefacts related to the prediction of high-Péclet number mixing. It accounts both for the hydrodynamic focusing of the flow inside the mixing channel and the nontrivial flow topology. The experimental technique used for quantifying the degree of mixing utilizes two initially transparent salt solutions that form a colored compound in a fast chemical reaction. The degree of mixing is derived from the average color saturation found at specific positions along the mixing channel. The data obtained from the theoretical model are in reasonable agreement with the experiments and underline the excellent performance of the SAR mixer, with a mixing length growing only logarithmically as a function of Péclet number.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Auroux PA, Iossifidis D, Reyes DR, Manz A (2002) Micro total analysis systems. 2. analytical standard operations and applications. Anal Chem 74:2637–2652

    Article  PubMed  Google Scholar 

  2. Boris JP, Book DL (1973) Flux-corrected transport—I. SHASTA a fluid transport algorithm that works. J Comput Phys 11:38–69

    Article  Google Scholar 

  3. Ehrfeld W, Hessel V, Löwe H (2000) Microreactors. Wiley-VCH, Weinheim

    Google Scholar 

  4. Fletcher CAJ (1991) Computational techniques for fluid dynamics. Springer, Berlin Heidelberg New York

    Google Scholar 

  5. Gobby D, Angeli P, Gavrilidis A (2001) Mixing characteristics of T-type microfluidic mixers. J Micromech Microeng 11:126–132

    Article  Google Scholar 

  6. Hardt S, Schönfeld F (2003) Laminar mixing in different interdigital micromixers: II. Numerical simulations. AIChE J 49:578–584

    Article  Google Scholar 

  7. Hardt S, Drese KS, Hessel V, Schönfeld F (2004) Passive micro mixers for applications in the micro reactor and μTAS field. Microfluid Nanofluid (in press)

  8. Hessel V, Hardt S, Löwe H, Schönfeld F (2003) Laminar mixing in different interdigital micromixers: I. Experimental characterization. AIChE J 49:566–577

    Article  Google Scholar 

  9. Hessel V, Hardt S, Löwe H (2004) Chemical micro process engineering. Fundamentals, modeling and reactions. Wiley-VCH, Weinheim

    Google Scholar 

  10. Jen CP, Wu CY, Lin YC, Wu CY (2003) Design and simulation of the micromixer with chaotic advection in twisted microchannels. Lab Chip 3:77–81

    Article  PubMed  Google Scholar 

  11. Jiang F, Drese KS, Hardt S, Küpper M, Schönfeld F (2004) Helical flows and chaotic mixing in curved micro channels. AIChE J 50: 2297–2305

    Article  Google Scholar 

  12. Kim DS, Lee IH, Kwon TH, Cho DW (2004) A barrier embedded Kenics micromixer. J Micromech Microeng 14:1294–1301

    Article  Google Scholar 

  13. Knight JB, Vishwanath A, Brody JP, Austin RH (1998) Hydrodynamic focussing on a silicon chip: mixing nanoliters in microseconds. Phys Rev Lett 80:3863–3866

    Article  Google Scholar 

  14. Neils C, Tyree Z, Finlayson B, Folch A (2004) Combinatorial mixing of microfluidic streams. Lab Chip 4:342–350

    Article  PubMed  Google Scholar 

  15. Landau LD, Lifshitz EM (1987) Fluid mechanics, 2nd edn. Butterworth Heinemann, Oxford

    Google Scholar 

  16. Lide DR (ed) (1998) CRC handbook of chemistry and physics, 79th edn. CRC Press, Boca Raton

  17. Melin J, Giménez G, Roxhed N, van der Wijngaart W, Stemme G (2004) A fast passive and planar liquid sample micromixer. Lab Chip 4:214–219

    Article  PubMed  Google Scholar 

  18. Press WA, Vetterling WT, Teukolsky SA, Flannery BP (1992) Numerical recipes in Fortran 77, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  19. Reyes DR, Iossifidis D, Auroux PA, Manz A (2002) Micro total analysis systems. 1. introduction, theory, and technology. Anal Chem 74:2623–2636

    Article  PubMed  Google Scholar 

  20. Schönfeld F, Hessel V, Hofmann C (2004) An optimised split-and-recombine micro mixer with uniform “chaotic” mixing. Lab Chip 4:65–69

    Article  PubMed  Google Scholar 

  21. Schwesinger N, Frank T, Wurmus H (1996) A modular microfluid system with an integrated micromixer, J Micromech Microeng 6:99–102

    Article  Google Scholar 

  22. Stroock AD, Dertinger SKW, Ajdari A, Mezić I, Stone HA, Whitesides GM (2002) Chaotic mixer for microchannnels. Science 295:647–651

    Article  PubMed  Google Scholar 

  23. Trimm HH, Ushio H, Patel RC (1981) Simultaneous determination of kinetic and thermodynamic parameters from fast-reaction kinetic measurements. Talanta 28:753–757

    Article  Google Scholar 

  24. Veenstra TT, Lammerink TSJ, Elwenspoek MC, van den Berg A (1998) Characterization method for a new diffusion mixer applicable in micro flow injection analysis systems. J Micromech Microeng 9:199–202

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Hardt.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hardt, S., Pennemann, H. & Schönfeld, F. Theoretical and experimental characterization of a low-Reynolds number split-and-recombine mixer. Microfluid Nanofluid 2, 237–248 (2006). https://doi.org/10.1007/s10404-005-0071-6

Download citation

Keywords

  • Micromixer
  • Mixing model
  • Mixing characterization