Skip to main content
Log in

Three-way silicon microvalve for pneumatic applications with electrostatic actuation principle

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

We present a normally closed electrostatically driven 3-way microvalve which is able to meet the requirements of industrial applications like small form factor, high flow rate, low weight, low power consumption and a short response time. The microvalve consists of a 3 layer full-wafer bonded silicon chip stack mounted on a ceramics substrate and a plastic cap covering the valve. A driver electronics which converts the TTL level to the actuation voltage of 200 V is placed on top of the valve. The valve operates in a pressure range of up to 8 bar and offers a flow rate of approximately 500 sccm. Due to the electrostatic actuation principle the peak power consumption is below 10 mW and the response time is below 1 ms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Jerman JH (1991) Electrically-activated, normally closed diaphragm valves. In: Proceedings transducers 91, IEEE, Picataway, NJ, USA, pp 1045–1048

  2. Zdeblick MJ, Anderson R, Jankowski J, Kline-Schoder B, Christel L, Miles R, Weber M (1994) Thermopneumatically actuated microvalve and integrated electro-fluidic circuits. In: Proceedings actuator 94, Axon Technologie Consult GmbH, Bremen, Germany, pp 56–60

  3. Ohnstein T, Fukiura T, Ridley J, Bonne U (1990) Micromachined silicon microvalve. In: Proceedings IEEE MEMS 90, IEEE, Piscataway, NJ, USA, pp 95–98

  4. Messner S, Muller M, Burger V, Schaible J (1998) A normally closed, bimetallically actuated 3-way microvalve for pneumatic applications. In: Proceedings IEEE MEMS 98, IEEE, Piscataway, NJ, USA, pp 40–44

  5. Huff MA, Gilbert JR, Schmidt MA (1993) Flow characteristics of a pressure-balanced microvalve. In: Proceedings transducers 93, IEEE, Piscataway, NJ, USA, pp 98–101

  6. Shikida M, Sato K (1994) Electrostatically driven gas valve with high conductance. J Microelectromech Syst. IEEE/ASME Publication; Belle Mead, USA, 3(2):76–80

    Google Scholar 

  7. Barth PW, Beatty CC, Field LA, Baker JW, Gordon GB (1994) A robust normally closed silicon microvalve. In: technical digest solid-state sensor and actuator workshop, Transducers Research Foundation, Cleveland, OH, USA, pp 248–250

  8. Tsai M-J, Hsu S-C, Ke C-H, Jang R-H, Wu C-Y (1998) A thermally buckling microvalve with integrated flow sensor. In: Proceedings actuator 98, Messe Bremen GmbH, Bremen, Germany, pp 130–136

  9. Schaible J, Vollmer J, Zengerle R, Sandmaier H, Strobelt T (2001) Electrostatic microvalves in silicon with 2-way-function for industrial applications. In: Proceedings transducers 2001, Springer, Berlin Heidelberg New York

  10. Gupta RK (1997) Electrostatic pull-in test structure design for in-situ mechanical property measurements of microelectromechanical systems (MEMS). PhD Thesis, Massachusetts Institute of Technology, Cambridge, USA

  11. Wang T, Barth P, Alley R, Baker J, Yates D, Field L, Gordon G, Beatty C, Tully L (1999) Production-ready silicon microvalves. SPIE proceedings, vol 3876. SPIE, Bellingham, pp 227–237

  12. Henning AK (2003) Improved gas flow model for microvalves. In: Proceedings, Transducers 2003, IEEE Press, Piscataway, NJ, USA, pp 1550–1553

  13. Henning AK (2004) Confirmation of large periphery compressible gas flow model for microvalves. In: SPIE proceedings, vol 5344. SPIE, Bellingham, pp 155–162

  14. Zengerle R, Wirtl J, Frisch H (1997) Mikroventil. German patent DE19546181

  15. Schaible J (2001) Mikrotechnisch hergestellte Schaltventile für Gase. PhD Thesis, University of Stuttgart, Germany

  16. van der Wijngaart W, Thorsén A, Stemme G (2004) A seat microvalve nozzle for optimal gas flow capacity at large controlled pressure. In: Proceedings IEEE MEMS 2004, IEEE, Piscataway, NJ, USA, pp 233–236

  17. Aine H, Block B (1986) Miniature valve and method of making same. US patent US4585209

  18. Richter M, Kluge S (1998) Microvalve. European patent EP0836012

  19. Sigloch H (1991) Technische Fluidmechanik. VDI Verlag, Düsseldorf, Germany

    Google Scholar 

  20. Messner S (2000) Elektrostatisch angetriebenes 3/2-Wege-Mikroventil für pneumatische Anwendungen. PhD Thesis, Albert-Ludwigs-University Freiburg, Germany

  21. Wibbeler J, Pfeiffer G, Hietschold M (1998) Parasitic charging of dielectric surfaces in capacitive microelectromechanical systems (MEMS). Sensors and Actuators A, Elsevier, The Netherlands, 71:74–80

Download references

Acknowledgements

The authors would like to thank the State of Baden-Württemberg (Germany) for the financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Messner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Messner, S., Schaible, J., Sandmaier, H. et al. Three-way silicon microvalve for pneumatic applications with electrostatic actuation principle. Microfluid Nanofluid 2, 89–96 (2006). https://doi.org/10.1007/s10404-005-0048-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-005-0048-5

Keywords

Navigation