Skip to main content
Log in

Rarefaction and compressibility effects on steady and transient gas flows in microchannels

  • Review
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

The main theoretical and experimental results from the literature about steady pressure-driven gas microflows are summarized. Among the different gas flow regimes in microchannels, the slip flow regime is the most frequently encountered. For this reason, the slip flow regime is particularly detailed and the question of appropriate choice of boundary conditions is discussed. It is shown that using second-order boundary conditions allows us to extend the applicability of the slip flow regime to higher Knudsen numbers that are usually relevant to the transition regime.

The review of pulsed flows is also presented, as this kind of flow is frequently encountered in micropumps. The influence of slip on the frequency behavior (pressure gain and phase) of microchannels is illustrated. When subjected to sinusoidal pressure fluctuations, microdiffusers reveal a diode effect which depends on the frequency. This diode effect may be reversed when the depth is shrunk from a few hundred to a few μm.

Thermally driven flows in microchannels are also described. They are particularly interesting for vacuum generation using microsystems without moving parts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4a, b
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

a :

Aspect ratio, h/b (dimensionless)

a i :

Widths of microdiffusers (m)

A i :

Coefficients for second-order slip flow models (dimensionless)

b :

Width (m)

c :

Mean-square molecular speed (m s−1)

d :

Molecular diameter (m)

E :

Diode efficiency (dimensionless)

Eck :

Eckert number (dimensionless)

h :

Microchannel depth (m)

k :

Boltzmann constant (J K−1)

Kn :

Knudsen number, λ/2h (dimensionless)

L :

Characteristic length of the studied volume (m)

L i :

Lengths of diffusers parts (m)

l :

Microchannel length (m)

l SV :

Characteristic length of a sampling volume (m)

m :

Mass of a molecule (kg)

Ma :

Mach number (dimensionless)

n :

Number density (m−3)

\(\ifmmode\expandafter\dot\else\expandafter\.\fi{N} \) :

Molecular flux (s−1)

P :

Pressure (Pa)

p :

Fluctuating pressure (Pa)

P* :

Pressure gain (dimensionless)

p* :

Fluctuating pressure gain (dimensionless)

Pra :

Prandtl number (dimensionless)

q :

Mass flow rate (kg s-1)

q* :

Reduced mass flow rate, q/q NS0 (dimensionless)

r :

Specific gas constant (J mol−1 K−1)

Re :

Reynolds number (dimensionless)

Sc :

Schmidt number (dimensionless)

T :

Temperature (K)

U :

Tangential velocity (m s−1)

Π:

Inlet over outlet pressure ratio, P i/P o (dimensionless)

α :

Diffuser angle (rad)

δ :

Mean molecular spacing (m)

ϕ :

Phase (rad)

γ :

Ratio of specific heats (dimensionless)

λ :

Mean free path (m)

ρ :

Density (m3s−1)

σ :

Tangential momentum accommodation coefficient (dimensionless)

σ T :

Thermal accommodation coefficient (dimensionless)

τ :

Characteristic time of intermolecular collisions (s)

i:

Inlet

n:

Normal direction

NS0:

Navier-Stokes model with no-slip boundary conditions

NS1:

Navier-Stokes model with first-order slip flow boundary conditions

NS2 :

Navier-Stokes model with second order slip flow boundary conditions

QHD1:

Quasihydrodynamic model with first-order slip flow boundary conditions

o:

Outlet

t:

Tangential direction

w:

Wall

References

  • Arkilic EB, Breuer KS (1993) Gaseous flow in small channels. AIAA paper, 93–3270, pp 1–7

  • Arkilic EB, Breuer KS, Schmidt MA (2001) Mass flow and tangential momentum accommodation in silicon micromachined channels. J Fluid Mech 437:29–43

    Article  CAS  Google Scholar 

  • Aubert C, Colin S (2001) High-order boundary conditions for gaseous flows in rectangular microchannels. Microscale Therm Eng 5(1):41–54

    Article  CAS  Google Scholar 

  • Aubert C, Colin S, Caen R (1998) Unsteady gaseous flows in tapered microchannels. In: Proceedings of the 1st international conference on modeling and simulation of microsystems, semiconductors, sensors, and actuators (MSM’98), vol 1, Santa Clara, California, Marriot Computational Publications, pp 486–491

  • Beskok A, Karniadakis GE (1999) A model for flows in channels, pipes, and ducts at micro and nano scales. Microscale Therm Eng 3(1):43–77

    Article  CAS  Google Scholar 

  • Bestman AR, Ikonwa IO, Mbelegodu IU (1995) Transient slip flow. Int J Energ Res 19(3):275–277

    Google Scholar 

  • Bhatnagar P, Gross E, Krook K (1954) A model for collision processes in gasses. Phys Rev 94:511–524

    Article  CAS  Google Scholar 

  • Bird GA (1978) Monte Carlo simulation of gas flows. Annu Rev Fluid Mech 10:11–31

    Article  CAS  Google Scholar 

  • Bird GA (1998) Molecular gas dynamics and the direct simulation of gas flows. Clarendon Press, Oxford

  • Caen R, Mas I, Colin S (1996) Ecoulements non permanents dans les microcanaux: réponse fréquentielle des microtubes pneumatiques. C R Acad Sci, Sér IIb 323:805–812

    Google Scholar 

  • Cercignani C, Illner R, Pulvirenti M (1994) The mathematical theory of dilute gases, vol 106. Springer, Berlin Heidelberg New York

  • Chapman S, Cowling TG (1952) The mathematical theory of non-uniform gases. Cambridge University Press, Cambridge

  • Chen S, Doolen G (1998) Lattice Boltzmann method for fluid flows. Annu Rev Fluid Mech 30:329–364

    Article  Google Scholar 

  • Chen CS, Lee SM, Sheu JD (1998) Numerical analysis of gas flow in microchannels. Numer Heat Transf A 33:749–762

    CAS  Google Scholar 

  • Colin S, Anduze M, Caen R (1998a) A pneumatic frequency generator for experimental analysis of unsteady microflows. In: Proceedings of the 1998 ASME International mechanical engineering congress and exposition, Anaheim, California, November 1998

  • Colin S, Aubert C, Caen R (1998b) Unsteady gaseous flows in rectangular microchannels: frequency response of one or two pneumatic lines connected in series. Euro J Mech B–Fluids 17(1):79–104

    Google Scholar 

  • Colin S, Elizarova TG, Sheretov YV, Lengrand J-C, Camon H (2003) Micro-écoulements gazeux: validation expérimentale de modèles QHD et de Navier-Stokes avec conditions aux limites de glissement. In: CDROM de 16ème Congrès Français de Mécanique, Nice, France, September 2003

  • Colin S, Lalonde P, Caen R (2004) Validation of a second-order slip flow model in rectangular microchannels. Heat Transfer Eng 25(3):23–30

    CAS  Google Scholar 

  • Deissler RG (1964) An analysis of second-order slip flow and temperature-jump boundary conditions for rarefied gases. Int J Heat Mass Transf 7:681–694

    Article  Google Scholar 

  • Ebert WA, Sparrow EM (1965) Slip flow in rectangular and annular ducts. J Basic Eng 87:1018–1024

    CAS  Google Scholar 

  • Elizavora TG, Sheretov YV (2001) Theoretical and numerical investigation of quasi-gasdynamic and quasi-hydrodynamic equations. Comput Math Phys 41(2)219–234

    Google Scholar 

  • Elizarova TG, Sheretov YV (2003) Analyse du problème de l’écoulement gazeux dans les microcanaux par les équations quasi hydrodynamiques. La Houille Blanche 5:66–72

    Google Scholar 

  • Fan J, Shen C (1999) Statistical simulation of low-speed unidirectional flows in transition regime. In: Brun R, Campargue R, Gatigno Rl, Lengrand J-C (eds) Rarefied gas dynamics, vol 2. Cépaduès Editions, Toulouse, France, pp 245–252

  • Gad-el-Hak M (1999) The fluid mechanics of microdevices—the Freeman scholar lecture. J Fluid Eng 121:5–33

    Google Scholar 

  • Grad H (1949) On the kinetic theory of rarefied gases. Commun Pure Appl Math 2:331–407

    Google Scholar 

  • Harley JC, Huang Y, Bau HH, Zemel JN (1995) Gas flow in micro-channels. J Fluid Mech 284:257–274

    CAS  Google Scholar 

  • Hash D, Hassan H (1997) Two-dimensional coupling issues of hybrid DSMC/Navier-Stokes solvers. AIAA paper 97-2507:6333–6336

    Google Scholar 

  • Hobson JP (1970) Accommodation pumping—a new principle for low pressure. J Vacuum Sci Technol 7(2):301–357

    Google Scholar 

  • Hobson JP (1971) Analysis of accommodation pumps. J Vacuum Sci Technol 8(1):290–293

    Article  CAS  Google Scholar 

  • Hobson JP (1972) Physical factors influencing accommodation pumps. J Vacuum Sci Technol 9(1):252–256

    Article  CAS  Google Scholar 

  • Hudson ML, Bartel TJ (1999) DSMC simulation of thermal transpiration and accommodation pumps. In: Brun R, Campargue R, Gatigno Rl, Lengrand J-C (eds) Rarefied gas dynamics, vol 1. Cépaduès Editions, Toulouse, France, pp 719–726

  • Jie D, Diao X, Cheong KB, Yong LK (2000) Navier-Stokes simulations of gas flow in micro devices. J Micromech Microeng 10(3):372–379

    Article  CAS  Google Scholar 

  • Karniadakis GE, Beskok A (2002) Microflows: fundamentals and simulation. Springer, Berlin Heidelberg New York

  • Kennard EH (1938) Kinetic theory of gases, 1st ed. McGraw-Hill, New York

  • Lalonde P (2001) Etude expérimentale d’écoulements gazeux dans les microsystèmes à fluides. PhD thesis, Institut National des Sciences Appliquées, Toulouse, France

  • Lengrand J-C, Elizarova TG (2004) Microécoulements gazeux. In: Colin S (ed) Microfluidique, chapter 2. Hermès, Paris, France

  • Liu J, Tai Y-C, Ho C-M (1995) MEMS for pressure distribution studies of gaseous flows in microchannels. In: Proceedings of the 8th IEEE annual international workshop on micro-electro-mechanical systems (MEMS’95), an investigation of micro structures, sensors, actuators, machines, and systems, Amsterdam, The Netherlands, January/February 1995, pp 209–215

  • Loyalka SK, Hamoodi SA (1990) Poiseuille flow of a rarefied gas in a cylindrical tube: solution of linearized Boltzmann equation. Phys Fluids A 2(11): 2061–2065

    Article  CAS  Google Scholar 

  • Maurer J, Tabeling P, Joseph P, Willaime H (2003) Second-order slip laws in microchannels for helium and nitrogen. Phys Fluids 15(9):2613–2621

    Article  CAS  Google Scholar 

  • Mavriplis C, Ahn JC, Goulard R (1997) Heat transfer and flowfields in short microchannels using direct simulation Monte Carlo. J Thermophys Heat Transf 11(4):489–496

    CAS  Google Scholar 

  • Maxwell JC (1879) On stresses in rarefied gases arising from inequalities of temperature. Philos Trans R Soc 170:231–256

    Google Scholar 

  • Mitsuya Y (1993) Modified Reynolds equation for ultra-thin film gas lubrication using 1.5-order slip-flow model and considering surface accommodation coefficient. J Tribol 115:289–294

    CAS  Google Scholar 

  • Morini GL, Spiga M (1998) Slip flow in rectangular microtubes. Microscale Therm Eng 2(4):273–282

    Article  CAS  Google Scholar 

  • Muntz EP (1989) Rarefied gas dynamics. Annu Rev Fluid Mech 21:387–417

    Article  Google Scholar 

  • Muntz EP, Vargo SE (2002) Microscale vacuum pumps. In: Gad-el-Hak M (ed) The MEMS handbook. CRC Press, New York, pp 29.1–29.28

  • Norberg P, Ackelid U, Lundstrom I, Petersson LG (1997) On the transient gas flow through catalytically active micromachined channels. J Appl Phys 81(5):2094–2100

    Article  CAS  Google Scholar 

  • Oran ES, Oh CK, Cybyk BZ (1998) Direct simulation Monte Carlo: recent advances and applications. Annu Rev Fluid Mech 30:403–441

    Article  Google Scholar 

  • Pan LS, Liu GR, Lam KY (1999) Determination of slip coefficient for rarefied gas flows using direct simulation Monte Carlo. J Micromech Microeng 9(1):89–96

    Article  CAS  Google Scholar 

  • Pan LS, Ng TY, Xu D, Lam KY (2001) Molecular block model direct simulation Monte Carlo method for low velocity microgas flows. J Micromech Microeng 11(3):181–188

    Article  CAS  Google Scholar 

  • Piekos ES, Breuer KS (1996) Numerical modeling of micromechanical devices using the direct simulation Monte Carlo method. J Fluid Eng 118:464–469

    Google Scholar 

  • Roveda R, Goldstein D, Varghese P (1998) Hybrid Euler/particle approach for continuum/rarefied flows. J Spacecraft Rockets 35(3):258–265

    CAS  Google Scholar 

  • Sharipov F, Seleznev V (1998) Data on internal rarefied gas flows. J Phys Chem Ref Data 27(3):657–706

    CAS  Google Scholar 

  • Shih JC, Ho C-M, Liu J, Tai Y-C (1996) Monatomic and polyatomic gas flow through uniform microchannels. ASME DSC 59:197–203

    Google Scholar 

  • Sreekanth AK (1969) Slip flow through long circular tubes. In: Trilling L, Wachman HY (eds) Proceedings of the 6th international symposium on rarefied gas dynamics. Academic Press, New York, pp 667–680

  • Stefanov S, Cercignani C (1994) Monte Carlo simulation of a channel flow of a rarefied gas. Eur J Mech B–Fluids 13(1):93–114

    Google Scholar 

  • Vargo SE, Muntz EP (1997) An evaluation of a multiple-stage micromechanical Knudsen compressor and vacuum pump. In: Proceedings of the 20th international symposium on rarefied gas dynamics (RGD-20). Beijing, China, pp 995–1000

  • Vargo SE, Muntz EP (1999) Comparison of experiment and prediction for transitional flow in a single-stage micromechanical Knudsen compressor. In: Brun R, Campargue R, Gatignol R, Lengrand J-C (eds) Rarefied gas dynamics, vol 1. Cépaduès Editions, Toulouse, France, pp 711–718

  • Vargo SE, Muntz EP, Shiflett GR, Tang WC (1999) Knudsen compressor as a micro- and macroscale vacuum pump without moving parts or fluids. J Vacuum Sci Technol A 17(4):2308–2313

    Article  CAS  Google Scholar 

  • Wu J-S, Tseng K-C (2001) Analysis of micro-scale gas flows with pressure boundaries using direct simulation Monte Carlo method. Comput Fluids 30(6):711–735

    Article  Google Scholar 

  • Xue H, Fan Q (2000) A new analytic solution of the Navier-Stokes equations for microchannel flow. Microscale Therm Eng 4(2):125–143

    Article  Google Scholar 

  • Young RM (1999) Analysis of a micromachine based vacuum pump on a chip actuated by the thermal transpiration effect. J Vacuum Sci Technol B 17(2):280–287

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Colin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colin, S. Rarefaction and compressibility effects on steady and transient gas flows in microchannels. Microfluid Nanofluid 1, 268–279 (2005). https://doi.org/10.1007/s10404-004-0002-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-004-0002-y

Keywords

Navigation