Skip to main content
Log in

Optimizing irradiation conditions for low-intensity pulsed ultrasound to upregulate endothelial nitric oxide synthase

  • Original Article–Physics & Engineering
  • Published:
Journal of Medical Ultrasonics Aims and scope Submit manuscript

Abstract

Purpose

Here we aimed to develop a minimally invasive treatment for ischemic heart disease and demonstrate that low-intensity pulsed ultrasound (LIPUS) therapy improves myocardial ischemia by promoting myocardial angiogenesis in a porcine model of chronic myocardial ischemia. Studies to date determined the optimal treatment conditions within the range of settings available with existing ultrasound equipment and did not investigate a wider range of conditions.

Methods

We investigated a broad range of five parameters associated with ultrasound irradiation conditions that promote expression of endothelial nitric oxide synthase (eNOS), a key molecule that promotes angiogenesis in human coronary artery endothelial cells (HCAEC).

Results

Suboptimal irradiation conditions included 1-MHz ultrasound frequency, 500-kPa sound pressure, 20-min total irradiation time, 32–48-\(\mathrm{\mu s}\) pulse duration, and 320-\(\mathrm{\mu s}\) pulse repetition time. Furthermore, a proposed index, \({P}_{\mathrm{N}}\), calculated as the product of power and the total number of irradiation cycles applied to cells using LIPUS, uniformly revealed the experimental eNOS expression associated with the various values of five parameters under different irradiation conditions.

Conclusion

We determined the suboptimal ultrasound irradiation conditions for promoting eNOS expression in HCAEC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data are available from the corresponding author upon reasonable request.

References

  1. Moran AE, Forouzanfar MH, Roth GA, et al. Temporal trends in ischemic heart disease mortality in 21 world regions, 1980 to 2010: the global burden of disease 2010 study. Circulation. 2014;129:1483–92.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hata J, Kiyohara Y. Epidemiology of stroke and coronary artery disease in Asia. Circ J. 2013;77:1923–32.

    Article  PubMed  Google Scholar 

  3. Haar G. Therapeutic applications of ultrasound. Prog Biophys Mol Biol. 2007;93:111–29.

    Article  PubMed  Google Scholar 

  4. Hanawa K, Ito K, Aizawa K, Shindo T, et al. Low-intensity pulsed ultrasound induces angiogenesis and ameliorates left ventricular dysfunction in a porcine model of chronic myocardial ischemia. PLoS ONE. 2014;9:e104863.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Albornoz PM, Khanna A, Longo UG, et al. The evidence of low-intensity pulsed ultrasound for in vitro, animal and human fracture healing. Br Med Bull. 2011;100:39–57.

    Article  Google Scholar 

  6. Tanaka E, Kuroda S, Horiuchi S, et al. Low-intensity pulsed ultrasound in dentofacial tissue engineering. Ann Biomed Eng. 2015;43:871–86.

    Article  PubMed  Google Scholar 

  7. Yang FY, Lu WW, Lin WT, et al. Enhancement of neurotrophic factors in astrocyte for neuroprotective effects in brain disorders using low-intensity pulsed ultrasound stimulation. Brain Stimul. 2015;8:465–73.

    Article  PubMed  Google Scholar 

  8. Shindo T, Ito K, Ogata T, et al. Low-intensity pulsed ultrasound enhances angiogenesis and ameliorates left ventricular dysfunction in a mouse model of acute myocardial infarction. Arterioscler Thromb Vasc Biol. 2016;36:1220–9.

    Article  CAS  PubMed  Google Scholar 

  9. Parton RG. Life without caveolae. Science. 2001;293:2404–5.

    Article  CAS  PubMed  Google Scholar 

  10. Parton RG, Pozo MA. Caveolae as plasma membrane sensors, protectors and organizers. Nat Rev Mol Cell Biol. 2013;14:98–112.

    Article  CAS  PubMed  Google Scholar 

  11. Bass R. Diffraction effects in the ultrasonic field of a piston source. J Acoust Soc Am. 1958;30:602–5.

    Article  Google Scholar 

  12. Lochab J, Singh VR. Acoustic behaviour of plastics for medical applications. IJPAP. 2004;42:595–9.

    CAS  Google Scholar 

  13. Wilhjelm JE, Pedersen PC, Jacobsen SM. The influence of roughness, angle, range, and transducer type on the echo signal from planar interfaces. IEEE Trans Ultrason Ferroelectr Freq Control. 2001;48:511–21.

    Article  CAS  PubMed  Google Scholar 

  14. Dimmeler S, Fleming I, Fisslthaler B, et al. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature. 1999;399:601–5.

    Article  CAS  PubMed  Google Scholar 

  15. Lowry JL, Brovkovych V, Zhang Y, et al. Endothelial nitric-oxide synthase activation generates an inducible nitric-oxide synthase-like output of nitric oxide in inflamed endothelium. J Biol Chem. 2013;288:4174–93.

    Article  CAS  PubMed  Google Scholar 

  16. Vanhoutte PM, Zhao Y, Xu A, et al. Thirty years of saying NO: sources, fate, actions, and misfortunes of the endothelium-derived vasodilator mediator. Circ Res. 2016;119:375–96.

    Article  CAS  PubMed  Google Scholar 

  17. Nelson TR, Fowlkes JB, Abramowicz JS, et al. Ultrasound biosafety considerations for the practicing sonographer and sonologist. J Ultrasound Med. 2009;28:139–50.

    Article  PubMed  Google Scholar 

  18. Yu J, Bergaya S, Murata T, et al. Direct evidence for the role of caveolin-1 and caveolae in mechanotransduction and remodeling of blood vessels. J Clin Invest. 2006;116:1284–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pozo MA, Balasubramanian N, Alderson NB, et al. Phospho-caveolin-1 mediates integrin-regulated membrane domain internalization. Nat Cell Biol. 2005;7:901–8.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Jokhadar SZ, Majhenc J, Svetina S, et al. Positioning of integrin β1, caveolin-1, and focal adhesion kinase on the adhered membrane of spreading cells. Cell Biol Int. 2013;37:1276–84.

    Article  PubMed  Google Scholar 

  21. Yeo MG, Oh HJ, Cho HS, et al. Phosphorylation of Ser 21 in Fyn regulates its kinase activity, focal adhesion targeting, and is required for cell migration. J Cell Physiol. 2011;226:236–47.

    Article  CAS  PubMed  Google Scholar 

  22. Gervásio OL, Phillips WD, Cole L, et al. Caveolae respond to cell stretch and contribute to stretch-induced signaling. J Cell Sci. 2011;124:3581–90.

    Article  PubMed  Google Scholar 

  23. Patterson B, Miller DL. Experimental measurements of ultrasound attenuation in human chest wall and assessment of the mechanical index for lung ultrasound. Ultrasound Med Biol. 2020;46:1442–54.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Kazuto Kobayashi and Mr. Nagaya Okada (Honda Electronics) for their assistance with fabricating the transducers and calibrating the hydrophone used in this study. This work was partially supported by Grants-in-Aid for Scientific Research (23H03753) from the Japan Society for the Promotion of Science and Grants-in-Aid for H-24 from the Japan Society for the Promotion of Interdisciplinary Research and Development.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mototaka Arakawa or Hiroshi Kanai.

Ethics declarations

Conflict of interest

Daiki Ouchi, Shohei Mori, Mototaka Arakawa, Tomohiko Shindo, Hiroaki Shimokawa, Satoshi Yasuda, and Hiroshi Kanai declare no conflicts of interest.

Ethical approval

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Derivation of approximated lines in Fig. 3b using the least squares method

Appendix: Derivation of approximated lines in Fig. 3b using the least squares method

By introducing new variables \(x\) and \(\mathrm{y}\) as

$$\begin{array}{c}x={\mathrm{log}}_{10}\overline{{E }_{\mathrm{q}}},\end{array}$$
(A1)
$$\begin{array}{c}y=EX,\end{array}$$
(A2)

let us define an approximated line graph (polyline) in Fig. 3b as

$$\begin{array}{c}y=\left\{\begin{array}{c}{a}_{1}\left(x-{x}_{0}\right)+{y}_{0}, \left(x<{x}_{0}\right)\\ {a}_{2}\left(x-{x}_{0}\right)+{y}_{0}, \left(x\ge {x}_{0}\right),\end{array}\right.\end{array}$$
(A3)

where \({a}_{1}\), \({a}_{2}\), \({x}_{0}\), and \({y}_{0}\) are the coefficients of the approximated polyline that should be estimated. For the measured values \(\{{x}_{i},{y}_{i}\}\) (\({x}_{i}<{x}_{0}\)) and \(\{{x}_{j},{y}_{j}\}\) (\({x}_{j}\ge {x}_{0}\)), the weighted mean squared error \(\alpha ({a}_{1},{a}_{2},{y}_{0};\,\,{x}_{0})\) between the measured values and polyline in Eq. (A3) can be obtained as follows:

$$\begin{array}{c}\alpha \left({a}_{1},{a}_{2},{y}_{0};\,\,{x}_{0}\right)={\sum }_{i}{w}_{i}\cdot {\left|{y}_{i}-\left({a}_{1}\left({x}_{i}-{x}_{0}\right)+{y}_{0}\right)\right|}^{2}\\ +{\sum }_{j}{w}_{j}\cdot {\left|{y}_{j}-\left({a}_{2}\left({x}_{j}-{x}_{0}\right)+{y}_{0}\right)\right|}^{2}, \left({x}_{i}<{x}_{0},{x}_{j}\ge {x}_{0}\right)\end{array}$$
(A4)

where \(w\) is the weight defined by the variance of \(EX\), \({\sigma }^{2}\), as

$$\begin{array}{c}w=\frac{1}{{\sigma }^{2}},\end{array}$$
(A5)

where the standard deviation \(\sigma\) of \(EX\) is presented in Table 1 and Fig. 3b. By fixing the coefficient \({x}_{0}\) to an arbitrary value and defining \({x}{^\prime}\) as

$$\begin{array}{c}{x}^{\mathrm{^{\prime}}}\left({x}_{0}\right)=x-{x}_{0},\end{array}$$
(A6)

the condition minimizing \(\alpha \left({a}_{1},{a}_{2},{y}_{0};\,\,{x}_{0}\right)\) is given by

$$\begin{array}{c}\frac{1}{2}\frac{\partial \alpha \left({a}_{1},\,\,{a}_{2},\,\,{y}_{0};\,\,{x}_{0}\,\right)}{\partial {a}_{1}}={a}_{1}{\sum }_{i}{w}_{i}{{x}_{i}^{\mathrm{^{\prime}}}\left({x}_{0}\right)}^{2}-{\sum }_{i}{w}_{i}{y}_{i}{x}_{i}^{\mathrm{^{\prime}}}\left({x}_{0}\right)+{y}_{0}{\sum }_{i}{w}_{i}{x}_{i}^{\mathrm{^{\prime}}}\left({x}_{0}\right)=0,\end{array}$$
(A7)
$$\begin{array}{c}\frac{1}{2}\frac{\partial \alpha \left({a}_{1},\,\,{a}_{2},\,\,{y}_{0};\,\,{x}_{0}\,\right)}{\partial {a}_{2}}={a}_{2}{\sum }_{j}{w}_{j}{x}_{j}^{\mathrm{^{\prime}}}{\left({x}_{0}\right)}^{2}-{\sum }_{j}{w}_{j}{y}_{j}{x}_{j}^{\mathrm{^{\prime}}}\left({x}_{0}\right)+{y}_{0}{\sum }_{j}{w}_{j}{x}_{j}^{\mathrm{^{\prime}}}\left({x}_{0}\right)=0,\end{array}$$
(A8)
$$\begin{array}{c}\frac{1}{2}\frac{\partial \alpha \left({a}_{1},\,{a}_{2},\,{y}_{0};\,{x}_{0}\,\right)}{\partial {y}_{0}}={y}_{0}\left({\sum }_{i}{w}_{i}+{\sum }_{j}{w}_{j}\right)-\left({\sum }_{i}{w}_{i}{y}_{i}+{\sum }_{j}{w}_{j}{y}_{j}\right)\\ +{a}_{1}{\sum }_{i}{w}_{i}{x}_{i}^{\mathrm{^{\prime}}}\left({x}_{0}\right)+{a}_{2}{\sum }_{j}{w}_{j}{x}_{j}^{\mathrm{^{\prime}}}\left({x}_{0}\right)=0.\end{array}$$
(A9)

By substituting \({a}_{1}\) into Eq. (A7), and \({a}_{2}\) in Eq. (A8) into Eq. (A9), \(\widehat{{y}_{0}}({x}_{0})\), which minimizes \(\alpha \left({a}_{1},{a}_{2},{y}_{0};\,\,{x}_{0}\right)\) with fixed \({x}_{0}\), is estimated by

$$\begin{array}{c}\widehat{{y}_{0}}\left({x}_{0}\right)=\frac{{B}_{I}{E}_{I}{D}_{J}+{B}_{J}{E}_{J}{D}_{I}-\left({\sum }_{i}{w}_{i}{y}_{i}+{\sum }_{j}{w}_{j}{y}_{j}\right){D}_{I}{D}_{J}}{{{B}_{I}}^{2}{D}_{J}+{B}_{J}^{2}{D}_{I}-\left({\sum }_{i}{w}_{i}+{\sum }_{j}{w}_{j}\right){D}_{I}{D}_{J}},\end{array}$$
(A10)

where

$$\begin{array}{c}{B}_{I}={\sum }_{i}{w}_{i}{x}_{i}^{\mathrm{^{\prime}}}\left({x}_{0}\right), { B}_{J}={\sum }_{j}{w}_{j}{x}_{j}^{\mathrm{^{\prime}}}\left({x}_{0}\right),\\ {D}_{I}={\sum }_{i}{w}_{i}{{x}_{i}^{\mathrm{^{\prime}}}\left({x}_{0}\right)}^{2}, { D}_{J}={\sum }_{j}{w}_{j}{{x}_{j}^{\mathrm{^{\prime}}}\left({x}_{0}\right)}^{2},\\ {E}_{I}={\sum }_{i}{w}_{i}{y}_{i}{x}_{i}^{\mathrm{^{\prime}}}\left({x}_{0}\right),{E}_{J}={\sum }_{j}{w}_{j}{y}_{j}{x}_{j}^{\mathrm{^{\prime}}}\left({x}_{0}\right).\end{array}$$
(A11)

Subsequently, \(\widehat{{a}_{1}}\left({x}_{0}\right)\) and \(\widehat{{a}_{2}}\left({x}_{0}\right)\) minimizing \(\alpha \left({a}_{1}, {a}_{2}, {y}_{0};\, {x}_{0}\right)\) with a fixed \({x}_{0}\) are estimated by substituting Eq. (A10) into Eq. (A7) and (A8), respectively.

$$\begin{array}{c}\widehat{{a}_{1}}\left({x}_{0}\right)=\frac{{E}_{I}-{B}_{I}\widehat{{y}_{0}}\left({x}_{0}\right)}{{D}_{I}},\end{array}$$
(A12)
$$\begin{array}{c}\widehat{{a}_{2}}\left({x}_{0}\right)=\frac{{E}_{J}-{B}_{J}\widehat{{y}_{0}}\left({x}_{0}\right)}{{D}_{J}}.\end{array}$$
(A13)

Using \(\widehat{{a}_{1}}\left({x}_{0}\right)\), \(\widehat{{a}_{2}}\left({x}_{0}\right)\), and \(\widehat{{y}_{0}}\left({x}_{0}\right)\), \(\alpha \left(\widehat{{a}_{1}}\left({x}_{0}\right),\widehat{{a}_{2}}\left({x}_{0}\right),\widehat{{y}_{0}}\left({x}_{0}\right);\,{x}_{0}\right)\) is calculated for each of the various values \(\left\{{x}_{0}\right\}\). Thus, the coefficient \(\widehat{{x}_{0}}\) that minimizes \(\alpha \left({a}_{1},{a}_{2},{y}_{0};\,\,{x}_{0}\right)\) in Eq. (A4) can be obtained as follows:

$$\begin{array}{c}\widehat{{x}_{0}}=\mathrm{arg}\underset{{x}_{0}}{\mathrm{min}}\alpha \left(\widehat{{a}_{1}}\left({x}_{0}\right),\widehat{{a}_{2}}\left({x}_{0}\right),\widehat{{y}_{0}}\left({x}_{0}\right);\,\,{x}_{0}\right).\end{array}$$
(A14)

Finally, the optimum values of \({a}_{1}\), \({a}_{2}\), and \({y}_{0}\) for the minimum condition can be determined by \(\widehat{{a}_{1}}\left(\widehat{{x}_{0}}\right)\), \(\widehat{{a}_{2}}\left(\widehat{{x}_{0}}\right)\), and \(\widehat{{y}_{0}}\left(\widehat{{x}_{0}}\right)\), respectively.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouchi, D., Mori, S., Arakawa, M. et al. Optimizing irradiation conditions for low-intensity pulsed ultrasound to upregulate endothelial nitric oxide synthase. J Med Ultrasonics 51, 39–48 (2024). https://doi.org/10.1007/s10396-023-01382-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10396-023-01382-z

Keywords

Navigation