Skip to main content
Log in

Viability variation of T-cells under ultrasound exposure according to adhesion condition with bubbles

  • Original Article–physics & Engineering
  • Published:
Journal of Medical Ultrasonics Aims and scope Submit manuscript

Abstract

Purpose

Although cellular immunotherapy is expected as a new cancer treatment, its therapeutic efficiency is limited in solid tumors, because most cells return to the bloodstream rather than adhere to the target site. Therefore, we are motivated to develop a technique to concentrate the cells in the blood flow using active control of bubble-surrounded cells under ultrasound exposure considering both aspects of cell controllability and viability.

Methods

We prepared a lipid bubble conjugating ligand to adhere to the surface of the T-cells. First, we evaluated the cell controllability by retaining the cells on a wall of an artificial blood vessel through continuous ultrasound exposure. Next, we investigated the cell viability under ultrasound exposure in a suspension with various bubble concentrations.

Results

We estimated the concentration of bubbles when the adhesion to the cell surface was saturated. Then, we evaluated the cell viability with various conditions of ultrasound exposure and bubble concentrations. However, it was confirmed that cell damage occurred under conditions that achieved proper control of the cells. Therefore, we exposed the cells to burst waves to reduce the applied ultrasound intensity. Consequently, the significant increase in cell viability was confirmed to be inversely proportional to the duty ratio.

Conclusion

To retain cells on a vessel wall, determining the appropriate ultrasound condition including sound pressure and waveform is important to maintain cell viability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Cui C, Enosawa S, Matsunari H, et al. Natural flavonol, myricetin, enhances the function and survival of cryopreserved hepatocytes in vitro and in vivo. Int J Mol Sci. 2019;20:6123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hayes C. Cellular immunotherapies for cancer. Ir J Med Sci. 2021;19:41–57.

    Article  Google Scholar 

  3. Riley RS, June CH, Langer R, et al. Delivery technologies for cancer immunotherapy. Nat Rev Drug Discov. 2019;18:175–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. O’Donnell JS, Teng MWL, Smyth MJ. Cancer immunoediting and resistance to T cell-based immunotherapy. Nat Rev Clin Oncol. 2019;16:151–67.

    Article  CAS  PubMed  Google Scholar 

  5. Aminin D, Wang YM. Macrophages as a “weapon” in anticancer cellular immunotherapy. Kaohsiung J Med Sci. 2021;37:749–58.

    Article  CAS  PubMed  Google Scholar 

  6. Diederich M. Natural compound inducers of immunogenic cell death. Arch Pharmacal Res. 2019;42:629–45.

    Article  CAS  Google Scholar 

  7. Wang X, Huang J, Zhang A, et al. Altered expression profile of BAFF receptors on peripheral blood B lymphocytes in Graves’ disease. BMC Endocr Disord. 2021;21:88.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Stoll A, Bruns H, Fuchs M, et al. CD137 (4–1BB) stimulation leads to metabolic and functional reprogramming of human monocytes/macrophages enhancing their tumoricidal activity. Leukemia. 2021;35:3482–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang Y, Lin S, Wang XY, et al. Nanovaccines for cancer immunotherapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019;11: e1559.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Fusaroli M, Isgrò V, Cutroneo PM, et al. Post-marketing surveillance of CAR-T-cell therapies: analysis of the FDA adverse event reporting system (FAERS) database. Drug Saf. 2022. https://doi.org/10.1007/s40264-022-01194-z.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ellard R, Kenyon M, Hutt D, et al. The EBMT immune effector cell nursing guidelines on CAR-T therapy: a framework for patient care and managing common toxicities. Clin Hematol Int. 2022;4:75–88.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Raglow Z, McKenna MK, Bonifant CL, et al. Targeting glycans for CAR therapy: the advent of sweet CARs. Mol Ther. 2022;30:2881–90.

    Article  CAS  PubMed  Google Scholar 

  13. Conejo-Garcia JR, Guevara-Patino JA. Barriers and opportunities for CAR T-Cell targeting of solid tumors. Immunol Invest. 2022. https://doi.org/10.1080/08820139.2022.2096463.

    Article  PubMed  Google Scholar 

  14. Escoffre JM, Deckers R, Bos C, et al. Bubble-assisted ultrasound: application in immunotherapy and vaccination. Adv Exp Med Biol. 2016;880:243–61.

    Article  CAS  PubMed  Google Scholar 

  15. Kokhuis T, Skachkov I, Naaijkens B, et al. Intravital microscopy of localized stem cell delivery using microbubbles and acoustic radiation force. Biotechnol Bioeng. 2015;112:220–7.

    Article  CAS  PubMed  Google Scholar 

  16. Woudstra L, Meinster E, Van Haren L, et al. StemBell therapy stabilizes atherosclerotic plaques after myocardial infarction. Cytotherapy. 2018;20:1143–54.

    Article  CAS  PubMed  Google Scholar 

  17. Emmens RW, Oedayrajsingh-Varma M, Woudstra L, et al. A comparison in therapeutic efficacy of several time points of intravenous StemBell administration in a rat model of acute myocardial infarction. Cytotherapy. 2017;19:131–40.

    Article  CAS  PubMed  Google Scholar 

  18. Demachi F, Murayama Y, Hosaka N, et al. Preliminary study on forming microbubble-surrounded cells as carriers for cellular therapy and evaluation of ultrasound controllability by fluorescence imaging. Jpn J Appl Phys. 2015;54:07HF19.

    Article  Google Scholar 

  19. Oitate R, Shimomura A, Wada H, et al. Validation of tracking performance of cell–bubble aggregation versus variation of acoustic field. Jpn J Appl Phys. 2017;56:07JF25.

    Article  Google Scholar 

  20. Oitate R, Otsuka T, Seki M, et al. Acoustic field sweeping for active induction of bubble-surrounded T-cells. Jpn J Appl Phys. 2018;57:07JF10.

    Article  Google Scholar 

  21. Seki M, Otsuka T, Oitate R, et al. Viability validation of therapeutic cells according to surrounded amount of microbubbles and ultrasound exposure condition. Jpn J Appl Phys. 2019;58:SGGE13.

    Article  CAS  Google Scholar 

  22. Chikaarashi T, Watanabe S, Miyamoto Y, et al. Experimental study of ultrasound retention of bubble-surrounded cells under various conditions of acoustic field and flow velocity. Jpn J Appl Phys. 2022;61:SG1071.

    Article  Google Scholar 

  23. Koda R, Koido J, Hosaka N, et al. Evaluation of active control of bubble liposomes in a bifurcated flow under various ultrasound conditions. Adv Biomed Eng. 2014;3:21–8.

    Article  Google Scholar 

  24. Masuda K, Watarai N, Nakamoto R, et al. Production of local acoustic radiation force to constrain direction of microcapsules in flow. Jpn J Appl Phys. 2010;49:07HF11.

    Article  Google Scholar 

  25. Masuda K, Nakamoto R, Watarai N, et al. Effect of existence of red blood cell in trapping performance of microbubbles by acoustic radiation force. Jpn J Appl Phys. 2011;50:07HF11.

    Article  Google Scholar 

  26. Hosaka N, Koda R, Onogi S, et al. Production and validation of acoustic field to enhance trapping efficiency of microbubbles by using a matrix array transducer. Jpn J Appl Phys. 2013;52:07HF14.

    Article  Google Scholar 

  27. Masuda K, Koda R, Watarai N, et al. (2011) Experimental study of active control of microbubbles in blood flow by forming their aggregations. Proc. IEEE Ultrasonics Symp. 2021–4

  28. Shigehara N, Demachi F, Koda R, et al. Experimental study for active path block in a multi-bifurcated flow by using microbubbles aggregation. Jpn J Appl Phys. 2013;52:07HF15.

    Article  Google Scholar 

  29. Huang G, Zhang M, Han L, et al. Physical investigation of acoustic waves induced by the oscillation and collapse of the single bubble. Ultrason Sonochem. 2021;72: 105440.

    Article  CAS  PubMed  Google Scholar 

  30. Kim C, Choi WJ, Ng Y, et al. Mechanically induced cavitation in biological systems. Life. 2021;11:546.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zevnik J, Dular M. Liposome destruction by a collapsing cavitation microbubble: a numerical study. Ultrason Sonochem. 2021;78: 105706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kudo N, Okada K, Yamamoto K. Sonoporation by single-shot pulsed ultrasound with microbubbles adjacent to cells. Biophys J. 2009;96:4866–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ito Y, Saito T, Watanabe S, et al. Validation of damage on vascular endothelial cells under ultrasound exposure according to adhered situation of bubbles. Jpn J Appl Phys. 2022;61:SG1066.

    Article  Google Scholar 

  34. Yokoe I, Omata D, Unga J, et al. Lipid bubbles combined with low-intensity ultrasound enhance the intratumoral accumulation and antitumor effect of pegylated liposomal doxorubicin in vivo. Drug Deliv. 2021;28:530–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Endo-Takahashi Y, Kurokawa R, Sato K, et al. Ternary complexes of pDNA, neuron-binding peptide, and PEGylated polyethyleneimine for brain delivery with nano-bubbles and ultrasound. Pharmaceutics. 2021;13:1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Suzuki R, Oda Y, Omata D, et al. Tumor growth suppression by the combination of nanobubbles and ultrasound. Cancer Sci. 2016;107:217–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yamatoya K, Nagai Y, Teramoto N, et al. Cryopreservation of undifferentiated and differentiated human neuronal cells. Regen Ther. 2022;19:58–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Miyamoto Y, Ikeuchi M, Noguchi H, et al. Long-term cryopreservation of human and other mammalian cells at −80 °C for 8 Years. Cell Med. 2018;10:2155179017733148.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zimmerman MA, Biggers CD, Li PA. Rapamycin treatment increases hippocampal cell viability in an mTOR-independent manner during exposure to hypoxia mimetic, cobalt chloride. BMC Neurosci. 2018;19:82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant from the Japan Society for the Promotion of Science (JSPS) through KAKENHI Grant No. 20H04547, and the Uehara Memorial Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kohji Masuda.

Ethics declarations

Conflict of interest

The authors declare that no conflicts of interest exist.

Ethical approval

This article does not contain any studies with human or animal subjects performed by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kajita, N., Ito, Y., Watanabe, S. et al. Viability variation of T-cells under ultrasound exposure according to adhesion condition with bubbles. J Med Ultrasonics 50, 121–129 (2023). https://doi.org/10.1007/s10396-022-01277-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10396-022-01277-5

Keywords

Navigation