Skip to main content

Advertisement

Log in

The roles of global longitudinal strain imaging in contemporary clinical cardiology

  • Review Article–Cardiology
  • Published:
Journal of Medical Ultrasonics Aims and scope Submit manuscript

Abstract

Myocardial deformation imaging is now readily available during routine echocardiography and plays an important role in the advanced care of cardiovascular diseases. Its clinical value in detecting subtle myocardial dysfunction, by helping diagnose disease and allowing prediction of disease progression and earlier pharmacological intervention, has been demonstrated. Strain imaging has been the most studied and clinically used technique in the field of cardio-oncology. A relative percent reduction in left ventricular (LV) global longitudinal strain > 15% from baseline is considered a marker of early subclinical LV dysfunction and may have the potential to guide early initiation of cardioprotective therapy. The role of strain imaging is expanding to other fields, such as cardiac amyloidosis, other cardiomyopathies, valvular heart diseases, pulmonary hypertension, and heart failure with preserved ejection fraction. It is also used for the evaluation of the right ventricle and atria. This review aims to provide a current understanding of the roles of strain imaging in the evaluation and management of patients with cardiovascular diseases in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Obokata M, Reddy YNV. The role of echocardiography in heart failure with preserved ejection fraction: what do we want from imaging? Heart Fail Clin. 2019;15:241–56 (Elsevier Inc).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Heimdal A, Støylen A, Torp H, et al. Real-time strain rate imaging of the left ventricle by ultrasound. J Am Soc Echocardiogr. 1998;11:1013–9.

    Article  CAS  PubMed  Google Scholar 

  3. Negishi K, Negishi T, Hare JL, et al. Independent and incremental value of deformation indices for prediction of trastuzumab-induced cardiotoxicity. J Am Soc Echocardiogr. 2013;26:493–8.

    Article  PubMed  Google Scholar 

  4. Negishi T, Miyazaki S, Negishi K. Echocardiography and cardio-oncology. Hear Lung Circ. 2019;28:1331–8.

    Article  Google Scholar 

  5. Phelan D, Collier P, Thavendiranathan P, et al. Relative apical sparing of longitudinal strain using two-dimensional speckle-tracking echocardiography is both sensitive and specific for the diagnosis of cardiac amyloidosis. Heart. 2012;98:1442–8.

    Article  PubMed  Google Scholar 

  6. Kasner M, Gaub R, Sinning D, et al. Global strain rate imaging for the estimation of diastolic function in HFNEF compared with pressure-volume loop analysis. Eur J Echocardiogr. 2010;11:743–51.

    Article  PubMed  Google Scholar 

  7. Haeck MLA, Scherptong RWC, Marsan NA, et al. Prognostic value of right ventricular longitudinal peak systolic strain in patients with pulmonary hypertension. Circ Cardiovasc Imaging. 2012;5:628–36.

    Article  PubMed  Google Scholar 

  8. Vitarelli A, Mangieri E, Terzano C, et al. Three-dimensional echocardiography and 2D–3D speckle-tracking imaging in chronic pulmonary hypertension: diagnostic accuracy in detecting hemodynamic signs of right ventricular (RV) failure. J Am Heart Assoc. 2015;4:e001584.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Reddy YNV, Obokata M, Egbe A, et al. Left atrial strain and compliance in the diagnostic evaluation of heart failure with preserved ejection fraction. Eur J Heart Fail. 2019;21:891–900.

    Article  PubMed  Google Scholar 

  10. Obokata M, Negishi K, Kurosawa K, et al. Incremental diagnostic value of la strain with leg lifts in heart failure with preserved ejection fraction. JACC Cardiovasc Imaging. 2013;6:749–58.

    Article  PubMed  Google Scholar 

  11. Ikoma T, Obokata M, Okada K, et al. Impact of right atrial remodeling in heart failure with preserved ejection fraction. J Card Fail. 2021;27:577–84.

    Article  PubMed  Google Scholar 

  12. Gorter TM, van Melle JP, Rienstra M, et al. Right heart dysfunction in heart failure with preserved ejection fraction: the impact of atrial fibrillation. J Card Fail. 2018;24:177–85.

    Article  PubMed  Google Scholar 

  13. Thavendiranathan P, Negishi T, Somerset E, et al. Strain-guided management of potentially cardiotoxic cancer therapy. J Am Coll Cardiol. 2021;77:392–401.

    Article  CAS  PubMed  Google Scholar 

  14. Pieske B, Tschöpe C, De Boer RA, et al. How to diagnose heart failure with preserved ejection fraction: the HFA-PEFF diagnostic algorithm: a consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur Heart J. 2019;40:3297–317.

    Article  PubMed  Google Scholar 

  15. Voigt J-U, Pedrizzetti G, Lysyansky P, et al. Definitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. J Am Soc Echocardiogr. 2015;28:183–93.

    Article  PubMed  Google Scholar 

  16. Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28:1-39.e14.

    Article  PubMed  Google Scholar 

  17. Nagata Y, Takeuchi M, Mizukoshi K, et al. Intervendor variability of two-dimensional strain using vendor-specific and vendor-independent software. J Am Soc Echocardiogr. 2015;28:630–41.

    Article  PubMed  Google Scholar 

  18. Yang H, Marwick TH, Fukuda N, et al. Improvement in strain concordance between two major vendors after the strain standardization initiative. J Am Soc Echocardiogr. 2015;28:642-8.e7.

    Article  PubMed  Google Scholar 

  19. Coleman MP, Forman D, Bryant H, et al. Cancer survival in Australia, Canada, Denmark, Norway, Sweden, and the UK, 1995–2007 (the International Cancer Benchmarking Partnership): an analysis of population-based cancer registry data. Lancet (London, England). 2011;377:127–38.

    Article  CAS  Google Scholar 

  20. Thavendiranathan P, Poulin F, Lim K-D, et al. Use of myocardial strain imaging by echocardiography for the early detection of cardiotoxicity in patients during and after cancer chemotherapy: a systematic review. J Am Coll Cardiol. 2014;63:2751–68.

    Article  PubMed  Google Scholar 

  21. Zamorano JL, Lancellotti P, Rodriguez MD, et al. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC committee for practice guidelines: the Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur Heart J. 2016;37:2768–801.

    Article  PubMed  Google Scholar 

  22. Cardinale D, Colombo A, Bacchiani G, et al. Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation. 2015;131:1981–8.

    Article  CAS  PubMed  Google Scholar 

  23. Plana JC, Galderisi M, Barac A, et al. Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2014;27:911–39.

    Article  PubMed  Google Scholar 

  24. Thavendiranathan P, Grant AD, Negishi T, et al. Reproducibility of echocardiographic techniques for sequential assessment of left ventricular ejection fraction and volumes: application to patients undergoing cancer chemotherapy. J Am Coll Cardiol. 2013;61:77–84.

    Article  PubMed  Google Scholar 

  25. Cardinale D, Colombo A, Lamantia G, et al. Anthracycline-induced cardiomyopathy: clinical relevance and response to pharmacologic therapy. J Am Coll Cardiol. 2010;55:213–20.

    Article  CAS  PubMed  Google Scholar 

  26. Negishi K, Negishi T, Haluska BA, et al. Use of speckle strain to assess left ventricular responses to cardiotoxic chemotherapy and cardioprotection. Eur Hear J Cardiovasc Imaging. 2014;15:324–31.

    Article  Google Scholar 

  27. Oikonomou EK, Kokkinidis DG, Kampaktsis PN, et al. Assessment of prognostic value of left ventricular global longitudinal strain for early prediction of chemotherapy-induced cardiotoxicity: a systematic review and meta-analysis. JAMA Cardiol. 2019;4:1007–18.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Santoro C, Esposito R, Lembo M, et al. Strain-oriented strategy for guiding cardioprotection initiation of breast cancer patients experiencing cardiac dysfunction. Eur Hear J Cardiovasc Imaging. 2019;20:1345–52.

    Article  Google Scholar 

  29. Negishi T, Thavendiranathan P, Negishi K, SUCCOUR investigators, et al. Rationale and design of the strain surveillance of chemotherapy for improving cardiovascular outcomes: the SUCCOUR trial. JACC Cardiovasc Imaging. 2018;11:1098–105.

    Article  PubMed  Google Scholar 

  30. Borlaug BA. Evaluation and management of heart failure with preserved ejection fraction. Nat Rev Cardiol. 2020;17:559–73.

    Article  CAS  PubMed  Google Scholar 

  31. Dunlay SM, Roger VL, Redfield MM. Epidemiology of heart failure with preserved ejection fraction. Nat Rev Cardiol. 2017;14:591–602.

    Article  PubMed  Google Scholar 

  32. Harada T, Obokata M. Obesity-related heart failure with preserved ejection fraction. Heart Fail Clin. 2020;16:357–68.

    Article  PubMed  Google Scholar 

  33. Obokata M, Reddy YNV, Borlaug BA. Diastolic dysfunction and heart failure with preserved ejection fraction. JACC Cardiovasc Imaging. 2020;13:245–57.

    Article  PubMed  Google Scholar 

  34. Borlaug BA, Lam CSP, Roger VL, et al. Contractility and ventricular systolic stiffening in hypertensive heart disease insights into the pathogenesis of heart failure with preserved ejection fraction. J Am Coll Cardiol. 2009;54:410–8.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Borlaug BA, Olson TP, Lam CSP, et al. Global cardiovascular reserve dysfunction in heart failure with preserved ejection fraction. J Am Coll Cardiol. 2010;56:845–54.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tan YT, Wenzelburger F, Lee E, et al. The pathophysiology of heart failure with normal ejection fraction: exercise echocardiography reveals complex abnormalities of both systolic and diastolic ventricular function involving torsion, untwist, and longitudinal motion. J Am Coll Cardiol. 2009;54:36–46.

    Article  PubMed  Google Scholar 

  37. Obokata M, Reddy YNV, Melenovsky V, et al. Myocardial injury and cardiac reserve in patients with heart failure and preserved ejection fraction. J Am Coll Cardiol. 2018;72:29–40.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Morris DA, Ma X-X, Belyavskiy E, et al. Left ventricular longitudinal systolic function analysed by 2D speckle-tracking echocardiography in heart failure with preserved ejection fraction: a meta-analysis. Open Hear. 2017;4:e000630.

    Article  Google Scholar 

  39. Reddy YNV, Carter RE, Obokata M, et al. A simple, evidence-based approach to help guide diagnosis of heart failure with preserved ejection fraction. Circulation. 2018;138:861–70.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Obokata M, Takeuchi M, Negishi K, et al. Relation between echocardiogram-based cardiac parameters and outcome in heart failure with preserved and reduced ejection fraction. Am J Cardiol. 2016;118:1356–62.

    Article  PubMed  Google Scholar 

  41. Shah AM, Claggett B, Sweitzer NK, et al. Prognostic importance of impaired systolic function in heart failure with preserved ejection fraction and the impact of spironolactone. Circulation. 2015;132:402–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Park JJ, Choi HM, Hwang IC, et al. Myocardial strain for identification of β-blocker responders in heart failure with preserved ejection fraction. J Am Soc Echocardiogr. 2019;32:1462-1469.e8.

    Article  PubMed  Google Scholar 

  43. Kosmala W, Marwick TH. Asymptomatic left ventricular diastolic dysfunction: predicting progression to symptomatic heart failure. JACC Cardiovasc Imaging. 2020;13:215–27.

    Article  PubMed  Google Scholar 

  44. Bozkurt B, Coats AJ, Tsutsui H, et al. Universal definition and classification of heart failure: a report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure. J Card Fail. 2021;S1071–9164:00050–6.

    Google Scholar 

  45. Redfield MM, Jacobsen SJ, Burnett JC Jr, et al. Burden of systolic and diastolic ventricular dysfunction in the community. JAMA. 2003;289:194–202.

    Article  PubMed  Google Scholar 

  46. From AM, Scott CG, Chen HH. The development of heart failure in patients with diabetes mellitus and pre-clinical diastolic dysfunction a population-based study. J Am Coll Cardiol. 2010;55:300–5.

    Article  PubMed  Google Scholar 

  47. Yang H, Wang Y, Nolan M, et al. Community screening for nonischemic cardiomyopathy in asymptomatic subjects ≥ 65 years with stage B heart failure. Am J Cardiol. 2016;117:1959–65.

    Article  PubMed  Google Scholar 

  48. Yang H, Negishi K, Wang Y, Nolan M, Saito M, Marwick TH. Echocardiographic screening for non-ischaemic stage B heart failure in the community. Eur J Heart Fail. 2016;18:1331–9.

    Article  PubMed  Google Scholar 

  49. Vasan RS, Xanthakis V, Lyass A, et al. Epidemiology of left ventricular systolic dysfunction and heart failure in the Framingham study: an echocardiographic study over 3 decades. JACC Cardiovasc Imaging. 2018;11:1–11.

    Article  PubMed  Google Scholar 

  50. Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373:2117–28.

    Article  CAS  PubMed  Google Scholar 

  51. Schmieder RE, Wagner F, Mayr M, et al. The effect of sacubitril/valsartan compared to olmesartan on cardiovascular remodelling in subjects with essential hypertension: the results of a randomized, double-blind, active-controlled study. Eur Heart J. 2017;38:3308–17.

    Article  CAS  PubMed  Google Scholar 

  52. Williams B, Cockcroft JR, Kario K, et al. Effects of sacubitril/valsartan versus olmesartan on central hemodynamics in the elderly with systolic hypertension: the parameter study. Hypertension (Dallas, Tex 1979). 2017;69:411–20.

    Article  CAS  Google Scholar 

  53. Gertz MA, Dispenzieri A, Sher T. Pathophysiology and treatment of cardiac amyloidosis. Nat Rev Cardiol. 2015;12:91–102.

    Article  CAS  PubMed  Google Scholar 

  54. Dorbala S, Cuddy S, Falk RH. How to image cardiac amyloidosis: a practical approach. JACC Cardiovasc Imaging. 2020;13:1368–83.

    Article  PubMed  Google Scholar 

  55. Castaño A, Narotsky DL, Hamid N, et al. Unveiling transthyretin cardiac amyloidosis and its predictors among elderly patients with severe aortic stenosis undergoing transcatheter aortic valve replacement. Eur Heart J. 2017;38:2879–87.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Hahn VS, Yanek LR, Vaishnav J, et al. Endomyocardial biopsy characterization of heart failure with preserved ejection fraction and prevalence of cardiac amyloidosis. JACC Heart Fail. 2020;8:712–24.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Liu D, Hu K, Niemann M, et al. Effect of combined systolic and diastolic functional parameter assessment for differentiation of cardiac amyloidosis from other causes of concentric left ventricular hypertrophy. Circ Cardiovasc Imaging. 2013;6:1066–72.

    Article  PubMed  Google Scholar 

  58. Bui QM, Hong KN, Kraushaar M, et al. Apical sparing strain pattern in danon disease: insights from a global registry. JACC Cardiovasc Imaging. 2020;13:2689–91.

    Article  PubMed  Google Scholar 

  59. Ferreira VV, Rosa SA, Pereira-da-Silva T, et al. Prevalence and prognostic impact of apical sparing contractility pattern in patients with aortic stenosis referred for transcatheter aortic valve implantation. Am J Cardiovasc Dis. 2021;11:283–94.

    PubMed  PubMed Central  Google Scholar 

  60. Saito M, Wake D, Higaki R, et al. Prognostic value of relative apical sparing pattern in patients with generalized left ventricular hypertrophy. JACC Cardiovasc Imaging. 2019;12:1283–4.

    Article  PubMed  Google Scholar 

  61. Suwalski P, Klingel K, Landmesser U, et al. Apical sparing on speckle tracking in Morbus Fabry. Eur Heart J. 2020;41:3486.

    Article  PubMed  Google Scholar 

  62. Buss SJ, Emami M, Mereles D, et al. Longitudinal left ventricular function for prediction of survival in systemic light-chain amyloidosis: incremental value compared with clinical and biochemical markers. J Am Coll Cardiol. 2012;60:1067–76.

    Article  PubMed  Google Scholar 

  63. Kado Y, Obokata M, Nagata Y, et al. Cumulative burden of myocardial dysfunction in cardiac amyloidosis assessed using four-chamber cardiac strain. J Am Soc Echocardiogr. 2016;29:1092-1099.e2.

    Article  PubMed  Google Scholar 

  64. Iwai K, Sekiguti M, Hosoda Y, et al. Racial difference in cardiac sarcoidosis incidence observed at autopsy. Sarcoidosis. 1994;11:26–31.

    CAS  PubMed  Google Scholar 

  65. Hamzeh N, Steckman DA, Sauer WH, et al. Pathophysiology and clinical management of cardiac sarcoidosis. Nat Rev Cardiol. 2015;12:278–88.

    Article  PubMed  Google Scholar 

  66. Soejima K, Yada H. The work-up and management of patients with apparent or subclinical cardiac sarcoidosis: with emphasis on the associated heart rhythm abnormalities. J Cardiovasc Electrophysiol. 2009;20:578–83.

    Article  PubMed  Google Scholar 

  67. Di Stefano C, Bruno G, Arciniegas Calle MC, et al. Diagnostic and predictive value of speckle tracking echocardiography in cardiac sarcoidosis. BMC Cardiovasc Disord. 2020;20:21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Kul S, Ozcelik HK, Uyarel H, et al. Diagnostic value of strain echocardiography, galectin-3, and tenascin-C levels for the identification of patients with pulmonary and cardiac sarcoidosis. Lung. 2014;192:533–42.

    Article  CAS  PubMed  Google Scholar 

  69. Murtagh G, Laffin LJ, Patel KV, et al. Improved detection of myocardial damage in sarcoidosis using longitudinal strain in patients with preserved left ventricular ejection fraction. Echocardiography. 2016;33:1344–52.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Davis MB, Arany Z, McNamara DM, et al. Peripartum cardiomyopathy: JACC state-of-the-art review. J Am Coll Cardiol. 2020;75:207–21.

    Article  CAS  PubMed  Google Scholar 

  71. Demakis JG, Rahimtoola SH. Peripartum cardiomyopathy. Circulation. 1971;44:964–8.

    Article  CAS  PubMed  Google Scholar 

  72. Sliwa K, Hilfiker-Kleiner D, Petrie MC, et al. Current state of knowledge on aetiology, diagnosis, management, and therapy of peripartum cardiomyopathy: a position statement from the Heart Failure Association of the European Society of Cardiology Working Group on peripartum cardiomyopathy. Eur J Heart Fail. 2010;12:767–78.

    Article  PubMed  Google Scholar 

  73. Sugahara M, Kagiyama N, Hasselberg NE, et al. Global left ventricular strain at presentation is associated with subsequent recovery in patients with peripartum cardiomyopathy. J Am Soc Echocardiogr. 2019;32:1565–73.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Bortnick AE, von Buchwald CL, Hasani A, Liu C, et al. Persistence of abnormal global longitudinal strain in women with peripartum cardiomyopathy. Echocardiography. 2021;38:885–91.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Mack MJ, Leon MB, Thourani VH, et al. Transcatheter aortic-valve replacement with a balloon-expandable valve in low-risk patients. N Engl J Med. 2019;380:1695–705.

    Article  PubMed  Google Scholar 

  76. Magne J, Cosyns B, Popescu BA, et al. Distribution and prognostic significance of left ventricular global longitudinal strain in asymptomatic significant aortic stenosis: an individual participant data meta-analysis. JACC Cardiovasc Imaging. 2019;12:84–92.

    Article  PubMed  Google Scholar 

  77. Vollema EM, Sugimoto T, Shen M, et al. Association of left ventricular global longitudinal strain with asymptomatic severe aortic stenosis: natural course and prognostic value. JAMA Cardiol. 2018;3:839–47.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Iung B, Baron G, Butchart EG, et al. A prospective survey of patients with valvular heart disease in Europe: the Euro heart survey on valvular heart disease. Eur Heart J. 2003;24:1231–43.

    Article  PubMed  Google Scholar 

  79. Canessa M, Thamman R, Americo C, et al. Global longitudinal strain predicts survival and left ventricular function after mitral valve surgery: a meta-analysis. Semin Thorac Cardiovasc Surg. 2021;33:337–42.

    Article  PubMed  Google Scholar 

  80. Collins AJ, Foley RN, Chavers B, et al. ’United States renal data system 2011 annual data report: atlas of chronic kidney disease & end-stage renal disease in the United States. Am J Kidney Dis. 2012;59:e1-420.

    Google Scholar 

  81. Krishnasamy R, Isbel NM, Hawley CM, et al. Left ventricular global longitudinal strain (GLS) is a superior predictor of all-cause and cardiovascular mortality when compared to ejection fraction in advanced chronic kidney disease. PLoS ONE. 2015;10:e0127044.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Obokata M, Kurosawa K, Ishida H, et al. Incremental prognostic value of ventricular-arterial coupling over ejection fraction in patients with maintenance hemodialysis. J Am Soc Echocardiogr. 2017;30:444-453.e2.

    Article  PubMed  Google Scholar 

  83. Obokata M, Borlaug BA. Left atrial dysfunction: the next key target in heart failure with preserved ejection fraction. Eur J Heart Fail. 2019;21:506–8.

    Article  PubMed  Google Scholar 

  84. Freed BH, Daruwalla V, Cheng JY, et al. Prognostic utility and clinical significance of cardiac mechanics in heart failure with preserved ejection fraction: importance of left atrial strain. Circ Cardiovasc Imaging. 2016;9:1–10.

    Article  Google Scholar 

  85. Reddy YNV, Obokata M, Verbrugge FH, et al. Atrial dysfunction in patients with heart failure with preserved ejection fraction and atrial fibrillation. J Am Coll Cardiol. 2020;76:1051–64.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Tamargo M, Obokata M, Reddy YNV, et al. Functional mitral regurgitation and left atrial myopathy in heart failure with preserved ejection fraction. Eur J Heart Fail. 2020;22:489–98.

    Article  PubMed  Google Scholar 

  87. Yoshida K, Obokata M, Kurosawa K, et al. Effect of sex differences on the association between stroke risk and left atrial anatomy or mechanics in patients with atrial fibrillation. Circ Cardiovasc Imaging. 2016;9:e004999.

    Article  PubMed  Google Scholar 

  88. Obokata M, Negishi K, Kurosawa K, et al. Left atrial strain provides incremental value for embolism risk stratification over CHA2DS2-VASc score and indicates prognostic impact in patients with atrial fibrillation. J Am Soc Echocardiogr. 2014;27:709-16.e4.

    Article  PubMed  Google Scholar 

  89. Sugimoto T, Robinet S, Dulgheru R, et al. Echocardiographic reference ranges for normal left atrial function parameters: results from the EACVI NORRE study. Eur Hear J Cardiovasc Imaging. 2018;19:630–8.

    Article  Google Scholar 

  90. Badano LP, Kolias TJ, Muraru D, et al. Standardization of left atrial, right ventricular, and right atrial deformation imaging using two-dimensional speckle tracking echocardiography: a consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. Eur Hear J Cardiovasc Imaging. 2018;19:591–600.

    Article  Google Scholar 

  91. Pathan F, D’Elia N, Nolan MT, et al. Normal ranges of left atrial strain by speckle-tracking echocardiography: a systematic review and meta-analysis. J Am Soc Echocardiogr. 2017;30:59-70.e8.

    Article  PubMed  Google Scholar 

  92. Thomas L, Marwick TH, Popescu BA, et al. Left atrial structure and function, and left ventricular diastolic dysfunction. J Am Coll Cardiol. 2019;73:1961–77.

    Article  PubMed  Google Scholar 

  93. Cameli M, Mandoli GE, Loiacono F, et al. Left atrial strain: a new parameter for assessment of left ventricular filling pressure. Heart Fail Rev. 2016;21:65–76.

    Article  PubMed  Google Scholar 

  94. Sugimoto T, Bandera F, Generati G, et al. Left atrial function dynamics during exercise in heart failure: pathophysiological implications on the right heart and exercise ventilation inefficiency. JACC Cardiovasc Imaging. 2017;10:1253–64.

    Article  PubMed  Google Scholar 

  95. Telles F, Nanayakkara S, Evans S, et al. Impaired left atrial strain predicts abnormal exercise haemodynamics in heart failure with preserved ejection fraction. Eur J Heart Fail. 2019;21:495–505.

    Article  CAS  PubMed  Google Scholar 

  96. Wakami K, Ohte N, Asada K, et al. Correlation between left ventricular end-diastolic pressure and peak left atrial wall strain during left ventricular systole. J Am Soc Echocardiogr. 2009;22:847–51.

    Article  PubMed  Google Scholar 

  97. Cameli M, Sparla S, Losito M, et al. Correlation of left atrial strain and doppler measurements with invasive measurement of left ventricular end-diastolic pressure in patients stratified for different values of ejection fraction. Echocardiography. 2016;33:398–405.

    Article  PubMed  Google Scholar 

  98. Shah SJ, Feldman T, Ricciardi MJ, et al. One-year safety and clinical outcomes of a transcatheter interatrial shunt device for the treatment of heart failure with preserved ejection fraction in the reduce elevated left atrial pressure in patients with heart failure (REDUCE LAP-HF I) trial: a ran. JAMA Cardiol. 2018;3:968–77.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Obokata M, Reddy YNV, Shah SJ, et al. Effects of interatrial shunt on pulmonary vascular function in heart failure with preserved ejection fraction. J Am Coll Cardiol. 2019;74:2539–50.

    Article  PubMed  Google Scholar 

  100. Obokata M, Reddy YNV, Melenovsky V, et al. Deterioration in right ventricular structure and function over time in patients with heart failure and preserved ejection fraction. Eur Heart J. 2019;40:689–98.

    Article  PubMed  Google Scholar 

  101. van Kessel M, Seaton D, Chan J, et al. Prognostic value of right ventricular free wall strain in pulmonary hypertension patients with pseudo-normalized tricuspid annular plane systolic excursion values. Int J Cardiovasc Imaging. 2016;32:905–12.

    Article  PubMed  Google Scholar 

  102. Nagata Y, Wu VC-C, Kado Y, et al. Prognostic value of right ventricular ejection fraction assessed by transthoracic 3D echocardiography. Circ Cardiovasc Imaging. 2017;10:e005384.

    Article  PubMed  Google Scholar 

  103. Rudski LG, Lai WW, Afilalo J, et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography. Endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr. 2010;23:685–713.

    Article  PubMed  Google Scholar 

  104. Sengupta PP, Narula J. RV form and function: a piston pump, vortex impeller, or hydraulic ram? JACC Cardiovasc Imaging. 2013;6:636–9.

    Article  PubMed  Google Scholar 

  105. Gorter TM, van Veldhuisen DJ, Bauersachs J, et al. Right heart dysfunction and failure in heart failure with preserved ejection fraction: mechanisms and management.Position statement on behalf of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2018;20:16–37.

    Article  PubMed  Google Scholar 

  106. Fine NM, Chen L, Bastiansen PM, et al. Reference values for right ventricular strain in patients without cardiopulmonary disease: a prospective evaluation and meta-analysis. Echocardiography. 2015;32:787–96.

    Article  PubMed  Google Scholar 

  107. Morris DA, Krisper M, Nakatani S, et al. Normal range and usefulness of right ventricular systolic strain to detect subtle right ventricular systolic abnormalities in patients with heart failure: a multicentre study. Eur Heart J Cardiovasc Imaging. 2017;18:212–23.

    Article  PubMed  Google Scholar 

  108. Gorter TM, Hoendermis ES, van Veldhuisen DJ, et al. Right ventricular dysfunction in heart failure with preserved ejection fraction: a systematic review and meta-analysis. Eur J Heart Fail. 2016;18:1472–87.

    Article  PubMed  Google Scholar 

  109. Lam CSP, Roger VL, Rodeheffer RJ, et al. Pulmonary hypertension in heart failure with preserved ejection fraction. A community-based study. J Am Coll Cardiol. 2009;53:1119–26.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Chung L, Liu J, Parsons L, et al. Characterization of connective tissue disease-associated pulmonary arterial hypertension from REVEAL: identifying systemic sclerosis as a unique phenotype. Chest. 2010;138:1383–94.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Sobanski V, Giovannelli J, Lynch BM, et al. Characteristics and survival of anti-U1 RNP antibody-positive patients with connective tissue disease-associated pulmonary arterial hypertension. Arthritis Rheumatol (Hoboken, NJ). 2016;68:484–93.

    Article  CAS  Google Scholar 

  112. Sachdev A, Villarraga HR, Frantz RP, et al. Right ventricular strain for prediction of survival in patients with pulmonary arterial hypertension. Chest. 2011;139:1299–309.

    Article  PubMed  Google Scholar 

  113. Lejeune S, Roy C, Ciocea V, et al. Right ventricular global longitudinal strain and outcomes in heart failure with preserved ejection fraction. J Am Soc Echocardiogr. 2020;33:973-984.e2.

    Article  PubMed  Google Scholar 

  114. Shukla M, Park J-H, Thomas JD, et al. Prognostic value of right ventricular strain using speckle-tracking echocardiography in pulmonary hypertension: a systematic review and meta-analysis. Can J Cardiol. 2018;34:1069–78.

    Article  PubMed  Google Scholar 

  115. Hulshof HG, Eijsvogels TMH, Kleinnibbelink G, et al. Prognostic value of right ventricular longitudinal strain in patients with pulmonary hypertension: a systematic review and meta-analysis. Eur Hear journal Cardiovasc Imaging. 2019;20:475–84.

    Article  Google Scholar 

  116. Park SJ, Park J-H, Lee HS, et al. Impaired RV global longitudinal strain is associated with poor long-term clinical outcomes in patients with acute inferior STEMI. JACC Cardiovasc Imaging. 2015;8:161–9.

    Article  PubMed  Google Scholar 

  117. Risum N, Valeur N, Søgaard P, et al. Right ventricular function assessed by 2D strain analysis predicts ventricular arrhythmias and sudden cardiac death in patients after acute myocardial infarction. Eur Hear J Cardiovasc Imaging. 2018;19:800–7.

    Article  Google Scholar 

  118. Ivey-Miranda JB, Almeida-Gutiérrez E, Borrayo-Sánchez G, et al. Right ventricular longitudinal strain predicts acute kidney injury and short-term prognosis in patients with right ventricular myocardial infarction. Int J Cardiovasc Imaging. 2019;35:107–16.

    Article  PubMed  Google Scholar 

  119. Kusunose K, Haga A, Abe T, et al. Utilization of artificial intelligence in echocardiography. Circ J. 2019;83:1623–9.

    Article  PubMed  Google Scholar 

  120. Knackstedt C, Bekkers SCAM, Schummers G, et al. Fully automated versus standard tracking of left ventricular ejection fraction and longitudinal strain: the FAST-EFs multicenter study. J Am Coll Cardiol. 2015;66:1456–66.

    Article  PubMed  Google Scholar 

Download references

Funding

Masaru Obokata received research grants from the Fukuda Foundation for Medical Technology, the Mochida Memorial Foundation for Medical and Pharmaceutical Research, Nippon Shinyaku, Takeda Science Foundation, the Japanese Circulation Society, the Japanese College of Cardiology, and JSPS KAKENHI (21K1607800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaru Obokata.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical approval

This is a review paper and does not involve any human or animal procedure.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kato, T., Harada, T., Kagami, K. et al. The roles of global longitudinal strain imaging in contemporary clinical cardiology. J Med Ultrasonics 49, 175–185 (2022). https://doi.org/10.1007/s10396-021-01184-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10396-021-01184-1

Keywords

Navigation