Skip to main content
Log in

Comparison of ultrasound speed in articular cartilage measured by different time-of-flight methods

  • Technical Note
  • Published:
Journal of Medical Ultrasonics Aims and scope Submit manuscript

Abstract

The purpose of this study was to investigate whether different time-of-flight (TOF) methods including amplitude-related methods, which determine tissue borders from the reflected wave itself, and the cross-correlation method, which requires reference signals to determine borders, influence speed of sound (SOS) values for articular cartilage. Left femoral condyle samples from a 6-month-old pig and a 3-year-old pig were used. Radiofrequency signals from the cartilage surface and cartilage–bone interface were acquired using the ultrasound transducer for nine points in each sample. TOF was calculated by three amplitude-related methods (peak amplitude, peak envelope, signal phase) and a cross-correlation method. Cartilage thickness was measured microscopically, and SOS was calculated at each point. Mean (± standard deviation) SOSs in cartilage from the 9-point measurement by the four TOF methods were 1488 ± 51, 1488 ± 48, 1487 ± 54, and 1466 ± 51 m/s (for peak amplitude, peak envelope, signal phase, and cross-correlation methods, respectively) for the 6-month-old pig, and 1709 ± 107, 1717 ± 104, 1713 ± 105, and 1695 ± 138 m/s, respectively, for the 3-year-old pig. Paired t testing identified no significant differences between the amplitude-related methods and the cross-correlation method, although SOS values yielded by the amplitude-related methods tended to be higher than those from the cross-correlation method. These results suggest that amplitude-related methods of TOF measurement and the cross-correlation method are equivalently applicable to articular cartilage SOS measurement when a wave is clearly reflected from cartilage. TOF methods should thus be considered in studies on SOS measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Kellgren JH, Lawrence JS. Radiological assessment of osteo-arthrosis. Ann Rheum Dis. 1957;16:494–502.

    Article  PubMed  CAS  Google Scholar 

  2. Eckstein F, Buck RJ, Burstein D, Charles HC, Crim J, Hudelmaier M, et al. Precision of 3.0 Tesla quantitative magnetic resonance imaging of cartilage morphology in a multicentre clinical trial. Ann Rheum Dis. 2008;67:1683–8.

    Article  PubMed  CAS  Google Scholar 

  3. Multanen J, Rauvala E, Lammentausta E, Ojala R, Kiviranta I, Hakkinen A et al. Reproducibility of imaging human knee cartilage by delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) at 1.5 Tesla. Osteoarthritis Cartilage. 2008;17:559–64.

    Google Scholar 

  4. Wang SZ, Huang YP, Saarakkala S, Zheng YP. Quantitative assessment of articular cartilage with morphologic, acoustic and mechanical properties obtained using high-frequency ultrasound. Ultrasound Med Biol. 2010;36:512–27.

    Article  PubMed  Google Scholar 

  5. Kaleva E, Saarakkala S, Toyras J, Nieminen HJ, Jurvelin JS. In vitro comparison of time-domain, frequency-domain and wavelet ultrasound parameters in diagnostics of cartilage degeneration. Ultrasound Med Biol. 2008;34:155–9.

    Article  PubMed  CAS  Google Scholar 

  6. Chiang EH, Adler RS, Meyer CR, Rubin JM, Dedrick DK, Laing TJ. Quantitative assessment of surface roughness using backscattered ultrasound: the effects of finite surface curvature. Ultrasound Med Biol. 1994;20:123–35.

    Article  PubMed  CAS  Google Scholar 

  7. Aisen AM, McCune WJ, MacGuire A, Carson PL, Silver TM, Jafri SZ, et al. Sonographic evaluation of the cartilage of the knee. Radiology. 1984;153:781–4.

    PubMed  CAS  Google Scholar 

  8. McCune WJ, Dedrick DK, Aisen AM, MacGuire A. Sonographic evaluation of osteoarthritic femoral condylar cartilage. Correlation with operative findings. Clin Orthop Relat Res. 1990:230–5.

  9. Castriota-Scanderbeg A, De Micheli V, Scarale MG, Bonetti MG, Cammisa M. Precision of sonographic measurement of articular cartilage: inter- and intraobserver analysis. Skeletal Radiol. 1996;25:545–9.

    Article  PubMed  CAS  Google Scholar 

  10. Adam C, Eckstein F, Milz S, Schulte E, Becker C, Putz R. The distribution of cartilage thickness in the knee-joints of old-aged individuals—measurement by A-mode ultrasound. Clin Biomech (Bristol, Avon). 1998;13:1–10.

    Article  Google Scholar 

  11. Yoon CH, Kim HS, Ju JH, Jee WH, Park SH, Kim HY. Validity of the sonographic longitudinal sagittal image for assessment of the cartilage thickness in the knee osteoarthritis. Clin Rheumatol. 2008;27:1507–16.

    Article  PubMed  Google Scholar 

  12. Toyras J, Laasanen MS, Saarakkala S, Lammi MJ, Rieppo J, Kurkijarvi J, et al. Speed of sound in normal and degenerated bovine articular cartilage. Ultrasound Med Biol. 2003;29:447–54.

    Article  PubMed  Google Scholar 

  13. Myers SL, Dines K, Brandt DA, Brandt KD, Albrecht ME. Experimental assessment by high frequency ultrasound of articular cartilage thickness and osteoarthritic changes. J Rheumatol. 1995;22:109–16.

    PubMed  CAS  Google Scholar 

  14. Yao JQ, Seedhom BB. Ultrasonic measurement of the thickness of human articular cartilage in situ. Rheumatology (Oxford). 1999;38:1269–71.

    Article  CAS  Google Scholar 

  15. Nieminen HJ, Toyras J, Laasanen MS, Jurvelin JS. Acoustic properties of articular cartilage under mechanical stress. Biorheology. 2006;43:523–35.

    PubMed  Google Scholar 

  16. Nieminen HJ, Zheng Y, Saarakkala S, Wang Q, Toyras J, Huang Y, et al. Quantitative assessment of articular cartilage using high-frequency ultrasound: research findings and diagnostic prospects. Crit Rev Biomed Eng. 2009;37:461–94.

    PubMed  Google Scholar 

  17. Suh JK, Youn I, Fu FH. An in situ calibration of an ultrasound transducer: a potential application for an ultrasonic indentation test of articular cartilage. J Biomech. 2001;34:1347–53.

    Article  PubMed  CAS  Google Scholar 

  18. Saarakkala S, Korhonen RK, Laasanen MS, Toyras J, Rieppo J, Jurvelin JS. Mechano-acoustic determination of Young’s modulus of articular cartilage. Biorheology. 2004;41:167–79.

    PubMed  Google Scholar 

  19. Agemura DH, O’Brien WD Jr, Olerud JE, Chun LE, Eyre DE. Ultrasonic propagation properties of articular cartilage at 100 MHz. J Acoust Soc Am. 1990;87:1786–91.

    Article  PubMed  CAS  Google Scholar 

  20. Mann RW. Comment on ‘ultrasonic measurement of the thickness of human articular cartilage in situ’ by Yao and Seedhom. Rheumatology (Oxford). 2001;40:829–31.

    Article  CAS  Google Scholar 

  21. Challis RE, Kitney RI. Biomedical signal processing (in four parts). Part 1. Time-domain methods. Med Biol Eng Comput. 1990;28:509–24.

    Article  PubMed  CAS  Google Scholar 

  22. Ling HY, Zheng YP, Patil SG. Strain dependence of ultrasound speed in bovine articular cartilage under compression in vitro. Ultrasound Med Biol. 2007;33:1599–608.

    Article  PubMed  CAS  Google Scholar 

  23. Jurvelin JS, Rasanen T, Kolmonen P, Lyyra T. Comparison of optical, needle probe and ultrasonic techniques for the measurement of articular cartilage thickness. J Biomech. 1995;28:231–5.

    Article  PubMed  CAS  Google Scholar 

  24. Patwardhan A, Moghe S, Wang K, Cruise H, Leonelli F. Relation between ventricular fibrillation voltage and probability of defibrillation shocks. Analysis using Hilbert transforms. J Electrocardiol. 1998;31:317–25.

    Article  PubMed  CAS  Google Scholar 

  25. Le Van Quyen M, Foucher J, Lachaux J, Rodriguez E, Lutz A, Martinerie J, et al. Comparison of Hilbert transform and wavelet methods for the analysis of neuronal synchrony. J Neurosci Methods. 2001;111:83–98.

    Article  PubMed  CAS  Google Scholar 

  26. Rosenblum MG, Pikovsky AS, Kurths J. Phase synchronization of chaotic oscillators. Phys Rev Lett. 1996;76:1804–7.

    Article  PubMed  CAS  Google Scholar 

  27. Huang YP, Zheng YP. Intravascular ultrasound (IVUS): a potential arthroscopic tool for quantitative assessment of articular cartilage. Open Biomed Eng J. 2009;3:13–20.

    Article  PubMed  Google Scholar 

  28. Viren T, Saarakkala S, Kaleva E, Nieminen HJ, Jurvelin JS, Toyras J. Minimally invasive ultrasound method for intra-articular diagnostics of cartilage degeneration. Ultrasound Med Biol. 2009;35:1546–54.

    Article  PubMed  CAS  Google Scholar 

  29. Viren T, Saarakkala S, Jurvelin JS, Pulkkinen HJ, Tiitu V, Valonen P, et al. Quantitative evaluation of spontaneously and surgically repaired rabbit articular cartilage using intra-articular ultrasound method in situ. Ultrasound Med Biol. 2010;36:833–9.

    Article  PubMed  Google Scholar 

  30. Nieminen HJ, Toyras J, Rieppo J, Nieminen MT, Hirvonen J, Korhonen R, et al. Real-time ultrasound analysis of articular cartilage degradation in vitro. Ultrasound Med Biol. 2002;28:519–25.

    Article  PubMed  Google Scholar 

  31. Nieminen HJ, Saarakkala S, Laasanen MS, Hirvonen J, Jurvelin JS, Toyras J. Ultrasound attenuation in normal and spontaneously degenerated articular cartilage. Ultrasound Med Biol. 2004;30:493–500.

    Article  PubMed  Google Scholar 

  32. Cherin E, Saied A, Pellaumail B, Loeuille D, Laugier P, Gillet P, et al. Assessment of rat articular cartilage maturation using 50-MHz quantitative ultrasonography. Osteoarthritis Cartilage. 2001;9:178–86.

    Article  PubMed  CAS  Google Scholar 

  33. Bhatnagar R, Christian RG, Nakano T, Aherne FX, Thompson JR. Age related changes and osteochondrosis in swine articular and epiphyseal cartilage: light and electron microscopy. Can J Comp Med. 1981;45:188–95.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Mr. Koichi Miyasaka, Mr. Masaru Murashita, Mr. Ryoichi Sakai, and Mr. Koji Hirota from Research Laboratory, Aloka Co. Ltd., Tokyo, Japan, for their technical support. This work was funded by the grant-in-aid Comprehensive Research on Aging and Health H19-007 of the Health and Labour Sciences Research Grants from the Ministry of Health, Labour and Welfare of Japan.

Conflict of interest

Each author certifies that he or she has no commercial associations (e.g., consultancies, stock ownership, equity interest, patent/licensing arrangements, etc.) that might pose a conflict of interest in connection with the submitted article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoru Ohashi.

About this article

Cite this article

Ohashi, S., Ohnishi, I., Matsumoto, T. et al. Comparison of ultrasound speed in articular cartilage measured by different time-of-flight methods. J Med Ultrasonics 38, 225–234 (2011). https://doi.org/10.1007/s10396-011-0317-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10396-011-0317-8

Keywords

Navigation