Skip to main content

Advertisement

Log in

Participation of mast cells in angiogenesis in the border zone of myocardial infarction in rats

  • Original Article
  • Published:
Journal of Medical Ultrasonics Aims and scope Submit manuscript

Abstract

Background

We hypothesized that mast cells may participate in coronary angiogenesis in acute myocardial infarction, contributing to myocardial salvage.

Methods

The left coronary artery was occluded in control (n = 30) and Ws rats (n = 30), which genetically lacked c-kit, resulting in a mast cell deficiency. Four weeks later, the infarct area, i.e., infarct core and surrounding infarct areas, and the non-infarct area were assessed histopathologically. The mast cell and small vessel densities were assessed using toluidine blue and alkaline phosphatase staining. Myocardial perfusion was assessed by myocardial contrast echocardiography (MCE).

Results

In Ws rats, the percentage infarct core area increased (p < 0.05) compared with the controls, whereas the percentage surrounding infarct area decreased (p < 0.01). Mast cell density increased most in the surrounding infarct area (p < 0.01) in control rats, whereas mast cells were absent in Ws rats. Compared with the controls, coronary microvessel density decreased in the surrounding infarct area in Ws rats (p < 0.01). MCE showed that the percentage infarct core area, i.e., perfusion defect, increased (p < 0.05) and the percentage surrounding infarct area, i.e., reduced perfusion area, decreased (p < 0.01) in Ws rats.

Conclusion

Mast cells may participate in promoting coronary angiogenesis in the infarct area surrounding the infarct core, contributing to attenuation of left ventricular dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Shyu KG, Wang MT, Wang BW, et al. Intramyocardial injection of naked DNA encoding HIF-1alpha/VP16 hybrid to enhance angiogenesis in an acute myocardial infarction model in the rat. Cardiovasc Res. 2002;54:576–83.

    Article  PubMed  CAS  Google Scholar 

  2. Syed IS, Sanborn TA, Rosengart TK. Therapeutic angiogenesis: a biologic bypass. Cardiology. 2004;101:131–43.

    Article  PubMed  Google Scholar 

  3. Lee SH, Wolf PL, Escudero R, et al. Early expression of angiogenesis factors in acute myocardial ischemia and infarction. N Engl J Med. 2000;342:626–33.

    Article  PubMed  CAS  Google Scholar 

  4. Tomita M, Matsuzaki Y, Onitsuka T. Effect of mast cells on tumor angiogenesis in lung cancer. Ann Thorac Surg. 2000;69:1686–90.

    Article  PubMed  CAS  Google Scholar 

  5. Sawatsubashi M, Yamada T, Fukushima N, et al. Association of vascular endothelial growth factor and mast cells with angiogenesis in laryngeal squamous cell carcinoma. Virchows Arch. 2000;436:243–8.

    Article  PubMed  CAS  Google Scholar 

  6. Zhang W, Stoica G, Tasca SI, et al. Modulation of tumor angiogenesis by stem cell factor. Cancer Res. 2000;60:6757–62.

    PubMed  CAS  Google Scholar 

  7. Hasan Q, Tan ST, Gush J, et al. Steroid therapy of a proliferating hemangioma: histochemical and molecular changes. Pediatrics. 2000;105:117–20.

    Article  PubMed  CAS  Google Scholar 

  8. Laine P, Kaartinen M, Penttila A, et al. Association between myocardial infarction and the mast cells in the adventitia of the infarct-related coronary artery. Circulation. 1999;99:361–9.

    PubMed  CAS  Google Scholar 

  9. Kaartinen M, van der Wal AC, van der Loos CM, et al. Mast cell infiltration in acute coronary syndromes: implications for plaque rupture. J Am Coll Cardiol. 1998;32:606–12.

    Article  PubMed  CAS  Google Scholar 

  10. Somasundaram P, Ren G, Nagar H, et al. Mast cell tryptase may modulate endothelial cell phenotype in healing myocardial infarcts. J Pathol. 2005;205:102–11.

    Article  PubMed  CAS  Google Scholar 

  11. Tsujimura T, Hirota S, Nomura S, et al. Characterization of Ws mutant allele of rats: a 12-base deletion in tyrosine kinase domain of c-kit gene. Blood. 1991;78:1942–6.

    PubMed  CAS  Google Scholar 

  12. Niwa Y, Kasugai T, Ohno K, et al. Anemia and mast cell depletion in mutant rats that are homozygous at “white spotting (Ws)” locus. Blood. 1991;78:1936–41.

    PubMed  CAS  Google Scholar 

  13. Morimoto M, Kasugai T, Tei H, et al. Age-dependent amelioration of hypoplastic anemia in Ws/Ws rats with a small deletion at the kinase domain of c-kit. Blood. 1993;82:3315–20.

    PubMed  CAS  Google Scholar 

  14. Yaoita H, Sakabe A, Maehara K, et al. Different effects of carvedilol, metoprolol, and propranolol on left ventricular remodeling after coronary stenosis or after permanent coronary occlusion in rats. Circulation. 2002;105:975–80.

    Article  PubMed  CAS  Google Scholar 

  15. Mulvagh SL, Foley DA, Aeschbacher BC, et al. Second harmonic imaging of an intravenously administered echocardiographic contrast agent: visualization of coronary arteries and measurement of coronary blood flow. J Am Coll Cardiol. 1996;6:1519–25.

    Article  Google Scholar 

  16. Okazaki J, Ishikura F, Asanuma T, et al. Premature ventricular contraction during myocardial contrast echocardiography: relationship with imaging method, acoustic power and dose of contrast agent. J Cardiol. 2004;43:69–74.

    PubMed  Google Scholar 

  17. Lafitte S, Higashiyama A, Masugata H, et al. Contrast echocardiography can assess risk area and infarct size during coronary occlusion and reperfusion: experimental validation. J Am Coll Cardiol. 2002;39:1546–54.

    Article  PubMed  Google Scholar 

  18. Masugata H, Peters B, Cotter B, et al. Characterization of contraction and perfusion in the lateral border zone between normal and ischemic myocardium following coronary occlusion by myocardial contrast echocardiography. Am J Cardiol. 2001;87:639–43.

    Article  PubMed  CAS  Google Scholar 

  19. Yano A, Ito H, Iwakura K, et al. Myocardial contrast echocardiography with a new calibration method can estimate myocardial viability in patients with myocardial infarction. J Am Coll Cardiol. 2004;43:1799–806.

    Article  PubMed  Google Scholar 

  20. Dhume AS, Soundararajan K, Hunter WJ III, et al. Comparison of vascular smooth muscle cell apoptosis and fibrous cap morphology in symptomatic and asymptomatic carotid artery disease. Ann Vasc Surg. 2003;17:1–8.

    Article  PubMed  Google Scholar 

  21. Olivetti G, Ricci R, Beghi C, et al. Response of the border zone to myocardial infarction in rats. Am J Pathol. 1986;125:476–83.

    PubMed  CAS  Google Scholar 

  22. Engels W, Reiters PH, Daemen MJ, et al. Transmural changes in mast cell density in rat heart after infarct induction in vivo. J Pathol. 1995;177:423–9.

    Article  PubMed  CAS  Google Scholar 

  23. Ziada AM, Hudlicka O, Tyler KR, et al. The effect of long-term vasodilation on capillary growth and performance in rabbit heart and skeletal muscle. Cardiovasc Res. 1984;18:724–32.

    Article  PubMed  CAS  Google Scholar 

  24. Ito H, Maruyama A, Iwakura K, et al. Clinical implications of the “no reflow” phenomenon. A predictor of complications and left ventricular remodeling in reperfused anterior wall myocardial infarction. Circulation. 1996;93:223–8.

    PubMed  CAS  Google Scholar 

  25. Fujii H, Tomita S, Nakatani T, et al. A novel application of myocardial contrast echocardiography to evaluate angiogenesis by autologous bone marrow cell transplantation in chronic ischemic pig model. J Am Coll Cardiol. 2004;43:1299–305.

    Article  PubMed  Google Scholar 

  26. Oshita A, Ohmori K, Yu Y, et al. Myocardial blood flow measurements in rats with simple pulsing contrast echocardiography. Ultrasound Med Biol. 2002;28:459–66.

    Article  PubMed  Google Scholar 

  27. Kondo I, Ohmori K, Oshita A, et al. Treatment of acute myocardial infarction by hepatocyte growth factor gene transfer: the first demonstration of myocardial transfer of a “functional” gene using ultrasonic microbubble destruction. J Am Coll Cardiol. 2004;44:644–53.

    Article  PubMed  CAS  Google Scholar 

  28. Yaoita H, Takase S, Maruyama Y, et al. Scintigraphic assessment of the effects of bone marrow-derived mononuclear cell transplantation combined with off-pump coronary artery bypass surgery in patients with ischemic heart disease. J Nucl Med. 2005;46:1610–7.

    PubMed  Google Scholar 

  29. Orlic D, Kajstura J, Chimenti S, et al. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci USA. 2001;98:10344–9.

    Article  PubMed  CAS  Google Scholar 

  30. Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infarcted myocardium. Nature. 2001;410:701–5.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masumi Iwai-Takano.

About this article

Cite this article

Yamaki, T., Iwai-Takano, M., Yaoita, H. et al. Participation of mast cells in angiogenesis in the border zone of myocardial infarction in rats. J Med Ultrasonics 36, 119–127 (2009). https://doi.org/10.1007/s10396-009-0229-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10396-009-0229-z

Keywords

Navigation