Journal of Medical Ultrasonics

, Volume 35, Issue 4, pp 153–160 | Cite as

Therapeutic potential of low-intensity ultrasound (part 1): thermal and sonomechanical effects

  • Loreto B. FerilJr
  • Katsuro Tachibana
  • Koichi Ogawa
  • Kazuki Yamaguchi
  • Ivan G. Solano
  • Yutaka Irie
Review Article


In this first part of the review, we will focus on and discuss various aspects of low-intensity ultrasound (US), with emphasis on mild thermal effects, apoptosis induction, and sonomechanical effects. Mild thermal effects of US have been commonly applied to physical therapy. Though US has clear beneficial effects, the advantage of using US over other heating modalities remains unclear. US has also been used in vivo and clinically in the treatment of wounds and fractures, with promising results. On the biomolecular level, studies have shown that US can induce apoptosis and that certain conditions can provide optimal apoptosis induction. As to potential therapeutic applications, in addition to the thermal and other physical effects, apoptosis induction by US may offer direct and rapid treatment of tumors or cancer tissues. Technological advances and rapidly accelerating research in this field are providing an ever-increasing array of therapeutic options for lowintensity US.


low-intensity ultrasound physical therapy sonomechanical effects 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chaussy C, Thuroff S, Rebillard X, et al. Technology insight: high-intensity focused ultrasound for urologic cancers. Nat Clin Pract Urol 2005;2(4):191–198.CrossRefGoogle Scholar
  2. 2.
    Kennedy JE. High-intensity focused ultrasound in the treatment of solid tumours. Nat Rev Cancer 2005;5(4):321–327.CrossRefGoogle Scholar
  3. 3.
    Tachibana K. Emerging technologies in therapeutic ultrasound: thermal ablation to gene delivery. Hum Cell 2004;17(1):7–15.Google Scholar
  4. 4.
    Kondo T, Krishna CM, Riesz P. Pyrolysis radicals formed by ultrasound in aqueous solutions of nucleotides: a spin trapping study. Int J Radiat Biol 1990;57(1):23–33.CrossRefGoogle Scholar
  5. 5.
    Feril LB Jr, Kondo T. Biological effects of low-intensity ultrasound: the mechanism involved, and its implications on therapy and on biosafety of ultrasound. J Radiat Res 2004;45(4):479–489.Google Scholar
  6. 6.
    Feril LB Jr, Kondo T, Umemura S, et al. Sound waves and antineoplastic drugs: the possibility of an enhanced combined anticancer therapy. J Med Ultrason 2002;29:173–187.CrossRefGoogle Scholar
  7. 7.
    Riesz P, Kondo T. Free radical formation induced by ultrasound and its biological implications. Free Radic Biol Med 1992;13(3):247–270.PubMedCrossRefGoogle Scholar
  8. 8.
    Feril LB Jr, Kondo T. Major factors involved in the inhibition of ultrasound-induced free radical production and cell killing by presonication incubation or by high cell density. Ultrason Sonochem 2005;12(5):353–357.PubMedCrossRefGoogle Scholar
  9. 9.
    Woo JSK. A short history of the development of ultrasound in obstetrics and gynecology. 1998–2002.
  10. 10.
    Dyson M, Suckling J. Stimulation of tissue repair by ultrasound: a survey of the mechanisms involved. Physiotherapy 1978;64(4):105–108.PubMedGoogle Scholar
  11. 11.
    Young SR, Dyson M. Effect of therapeutic ultrasound on the healing of full-thickness excised skin lesions. Ultrasonics 1990;28(3):175–180.PubMedCrossRefGoogle Scholar
  12. 12.
    Williams AR. Ultrasound: biological effects and potential hazards. London: Academic; 1983.Google Scholar
  13. 13.
    Harvey W, Dyson M, Pond JB, et al. The stimulation of protein synthesis in human fibroblasts by therapeutic ultrasound. Rheumatol Rehabil 1975;14(4):237.PubMedCrossRefGoogle Scholar
  14. 14.
    Ramirez A, Schwane JA, McFarland C, et al. The effect of ultrasound on collagen synthesis and fibroblast proliferation in vitro. Med Sci Sports Exerc 1997;29(3):326–332.PubMedGoogle Scholar
  15. 15.
    Fahnestock M, Rimer VG, Yamawaki RM, et al. Effects of ultrasound exposure in vitro on neuroblastoma cell membranes. Ultrasound Med Biol 1989;15(2):133–144.PubMedCrossRefGoogle Scholar
  16. 16.
    Handout on health: sports injuries. US Department of Health and Human Services, National Institutes of Health, Institute of Arthritis and Musculoskeletal and Skin Diseases 2004. Available from
  17. 17.
    Falconer J, Hayes KW, Chang RW. Therapeutic ultrasound in the treatment of musculoskeletal conditions. Arthritis Care Res 1990;3(2):85–91.PubMedGoogle Scholar
  18. 18.
    Gam AN, Johannsen F. Ultrasound therapy in musculoskeletal disorders: a meta-analysis. Pain 1995;63(1):85–91.PubMedCrossRefGoogle Scholar
  19. 19.
    Hayes KW. The use of ultrasound therapy to decrease pain and improve mobility. Crit Rev Phys Rehabil Med 1992;3:271–287.Google Scholar
  20. 20.
    Labelle H, Guibert R, Joncas J, et al. Lack of scientific evidence for the treatment of lateral epicondylitis of the elbow. An attempted meta-analysis. J Bone Joint Surg Br Vol 1992;74(5):646–51.Google Scholar
  21. 21.
    McDiarmid T, Burns PN. Clinical applications of therapeutic ultrasound. Physiotherapy 1987;73:155–162.Google Scholar
  22. 22.
    Roebroeck ME, Dekker J, Oostendorp RA. The use of therapeutic ultrasound by physical therapists in Dutch primary health care. Phys Ther 1998;78(5):470–478.PubMedGoogle Scholar
  23. 23.
    Baker KG, Robertson VJ, Duck FA. A review of therapeutic ultrasound: biophysical effects. Phys Ther 2001;81(7):1351–1358.PubMedGoogle Scholar
  24. 24.
    Barnett SB, Rott HD, ter Haar GR, et al. The sensitivity of biological tissue to ultrasound. Ultrasound Med Biol 1997;23(6):805–812.PubMedCrossRefGoogle Scholar
  25. 25.
    van der Heijden GJ, van der Windt DA, de Winter AF. Physiotherapy for patients with soft tissue shoulder disorders: a systematic review of randomised clinical trials. [see comment]. BMJ 1997; 315(7099):25–30.PubMedGoogle Scholar
  26. 26.
    Meakins A, Watson T. Longwave ultrasound and conductive heating increase functional ankle mobility in asymptomatic subjects. Phys Ther Sport 2006;7:74–80.CrossRefGoogle Scholar
  27. 27.
    Ward RS, Hayes-Lundy C, Reddy R, et al. Evaluation of topical therapeutic ultrasound to improve response to physical therapy and lessen scar contracture after burn injury. J Burn Care Rehabil 1994;15(1):74–79.PubMedCrossRefGoogle Scholar
  28. 28.
    Kurtai Gursel Y, Ulus Y, Bilgic A, et al. Adding ultrasound in the management of soft tissue disorders of the shoulder: a randomized placebo-controlled trial. [see comment]. Phy Ther 2004;84(4):336–343.Google Scholar
  29. 29.
    van der Windt DA, van der Heijden GJ, van den Berg SG, et al. Ultrasound therapy for musculoskeletal disorders: a systematic review. Pain 1999;81(3):257–271.PubMedCrossRefGoogle Scholar
  30. 30.
    Robinson AJ, Snyder-Mackler L. Clinical application of electrotherapeutic modalities. Phys Ther 1988;68(8):1235–1238.Google Scholar
  31. 31.
    ter Haar G, Dyson M, Oakley EM. The use of ultrasound by physiotherapists in Britain, 1985. Ultrasound Med Biol 1987;13(10):659–663.PubMedCrossRefGoogle Scholar
  32. 32.
    Feril LB Jr, Tachibana K, Yamaguchi K, et al. Bioeffects of ultrasound for therapy. Philippine Phys J 2007;29(1):1–4.Google Scholar
  33. 33.
    Claes L, Willie B. The enhancement of bone regeneration by ultrasound. Prog Biophys Mol Biol 2007;93(1–3):384–398.PubMedCrossRefGoogle Scholar
  34. 34.
    Houghton PE, Campbell KE. Choosing an adjunctive therapy for the treatment of chronic wounds. Ostomy Wound Manag 1999;45(8):43–52; quiz 53–4.Google Scholar
  35. 35.
    Dyson M, Franks C, Suckling J. Stimulation of healing of varicose ulcers by ultrasound. Ultrasonics 1976;14(5):232–236.PubMedCrossRefGoogle Scholar
  36. 36.
    Callam MJ, Harper DR, Dale JJ, et al. A controlled trial of weekly ultrasound therapy in chronic leg ulceration. Lancet 1987;2(8552):204–206.PubMedCrossRefGoogle Scholar
  37. 37.
    Nichter LS, Williams J. Ultrasonic wound debridement. J Hand Surg Am Vol 1988;13(1):142–146.CrossRefGoogle Scholar
  38. 38.
    De Deyne PG, Kirsch-Volders M. In vitro effects of therapeutic ultrasound on the nucleus of human fibroblasts. [see comment]. Phys Ther 1995;75(7):629–634.PubMedGoogle Scholar
  39. 39.
    Young SR, Dyson M. Macrophage responsiveness to therapeutic ultrasound. Ultrasound Med Biol 1990;16(8):809–816.PubMedCrossRefGoogle Scholar
  40. 40.
    al-Karmi AM, Dinno MA, Stoltz DA, et al. Calcium and the effects of ultrasound on frog skin. Ultrasound Med Biol 1994;20(1):73–81.PubMedCrossRefGoogle Scholar
  41. 41.
    Dinno MA, Dyson M, Young SR, et al. The significance of membrane changes in the safe and effective use of therapeutic and diagnostic ultrasound. Phys Med Biol 1989;34(11):1543–1552.PubMedCrossRefGoogle Scholar
  42. 42.
    Mortimer AJ, Dyson M. The effect of therapeutic ultrasound on calcium uptake in fibroblasts. Ultrasound Med Biol 1988;14(6):499–506.PubMedCrossRefGoogle Scholar
  43. 43.
    Turner SM, Powell ES, Ng CS. The effect of ultrasound on the healing of repaired cockerel tendon: is collagen cross-linkage a factor? J Hand Surg Br Vol 1989;14(4):428–433.CrossRefGoogle Scholar
  44. 44.
    el-Batouty MF, el-Gindy M, el-Shawaf I, et al. Comparative evaluation of the effects of ultrasonic and ultraviolet irradiation on tissue regeneration. Scand J Rheumatol 1986;15(4):381–386.PubMedCrossRefGoogle Scholar
  45. 45.
    Jackson BA, Schwane JA, Starcher BC. Effect of ultrasound therapy on the repair of Achilles tendon injuries in rats. Med Sci Sports Exerc 1991;23(2):171–176.PubMedGoogle Scholar
  46. 46.
    Webster DF, Harvey W, Dyson M, et al. The role of ultrasoundinduced cavitation in the “in vitro” stimulation of collagen synthesis in human fibroblasts. Ultrasonics 1980;18(1):33–37.PubMedCrossRefGoogle Scholar
  47. 47.
    Byl NN, McKenzie A, Wong T, et al. Incisional wound healing: a controlled study of low-and high-dose ultrasound. J Orthop Sports Phys Ther 1993;18(5):619–628.PubMedGoogle Scholar
  48. 48.
    Flemming K, Cullum N. Therapeutic ultrasound for venous leg ulcers. Cochrane Database Syst Rev 2000(4):CD001180.Google Scholar
  49. 49.
    Wu JR, Du GH. Temperature elevation generated by a focused Gaussian beam of ultrasound. Ultrasound Med Biol 1990;16(5):489–498.PubMedCrossRefGoogle Scholar
  50. 50.
    Chang WH, Sun JS, Chang SP, et al. Study of thermal effects of ultrasound stimulation on fracture healing. Bioelectromagnetics 2002;23(4):256–263. [erratum appears in 2002;23(6):485].PubMedCrossRefGoogle Scholar
  51. 51.
    Duarte LR. The stimulation of bone growth by ultrasound. Arch Orthop Trauma Surg 1983;101(3):153–159.PubMedCrossRefGoogle Scholar
  52. 52.
    Rawool NM, Goldberg BB, Forsberg F, et al. Power Doppler assessment of vascular changes during fracture treatment with lowintensity ultrasound. J Ultrasound Med 2003;22(2):145–153.PubMedGoogle Scholar
  53. 53.
    Feril LB Jr, Kondo T, Cui ZG, et al. Apoptosis induced by the sonomechanical effects of low-intensity pulsed ultrasound in a human leukemia cell line. Cancer Lett 2005;221(2):145–152.PubMedCrossRefGoogle Scholar
  54. 54.
    Lagneaux L, de Meulenaer EC, Delforge A, et al. Ultrasonic lowenergy treatment: a novel approach to induce apoptosis in human leukemic cells. Exp Hematol 2002;30(11):1293–1301.PubMedCrossRefGoogle Scholar
  55. 55.
    Ashush H, Rozenszajn LA, Blass M, et al. Apoptosis induction of human myeloid leukemic cells by ultrasound exposure. Cancer Res 2000;60(4):1014–1020.PubMedGoogle Scholar
  56. 56.
    Vykhodtseva N, McDannold N, Martin H, et al. Apoptosis in ultrasound-produced threshold lesions in the rabbit brain. Ultrasound Med Biol 2001;27(1):111–117.PubMedCrossRefGoogle Scholar
  57. 57.
    Honda H, Kondo T, Zhao QL, et al. Role of intracellular calcium ions and reactive oxygen species in apoptosis induced by ultrasound. Ultrasound Med Biol 2004;30(5):683–692.PubMedCrossRefGoogle Scholar
  58. 58.
    Kagiya G, Ogawa R, Tabuchi Y, et al. Expression of heme oxygenase-1 due to intracellular reactive oxygen species induced by ultrasound. Ultrason Sonochem 2006;13(5):388–396.PubMedCrossRefGoogle Scholar
  59. 59.
    Feril LB Jr, Kondo T, Ogawa R, et al. Dose-dependent inhibition of ultrasound-induced cell killing and free radical production by carbon dioxide. Ultrason Sonochem 2003;10(2):81–84.PubMedCrossRefGoogle Scholar
  60. 60.
    Marmottant P, Hilgenfeldt S. Controlled vesicle deformation and lysis by single oscillating bubbles. Nature 2003;423:153–158.PubMedCrossRefGoogle Scholar
  61. 61.
    Feril LB Jr, Kondo T, Zhao QL, et al. Enhancement of ultrasound-induced apoptosis and cell lysis by echo-contrast agents. Ultrasound Med Biol 2003;29(2):331–337.PubMedCrossRefGoogle Scholar
  62. 62.
    McNeil PL, Terasaki M. Coping with the inevitable: how cells repair a torn surface membrane. Nat Cell Biol 2001;3(5):E124–E129.PubMedCrossRefGoogle Scholar
  63. 63.
    Ando H, Feril LB Jr, Kondo T, et al. An echo-contrast agent, Levovist, lowers the ultrasound intensity required to induce apoptosis of human leukemia cells. Cancer Lett 2006;242:37–45.PubMedCrossRefGoogle Scholar
  64. 64.
    Barnett SB. Live scanning at ultrasound scientific conferences and the need for prudent policy. Ultrasound Med Biol 2003;29(8):1071–1076.PubMedCrossRefGoogle Scholar
  65. 65.
    Feril LB Jr, Kondo T, Zhao QL, et al. Enhancement of hyperthermia-induced apoptosis by non-thermal effects of ultrasound. Cancer Lett 2002;178(1):63–70.PubMedCrossRefGoogle Scholar
  66. 66.
    Feril LB Jr, Tsuda Y, Kondo T, et al. Ultrasound-induced killing of monocytic U937 cells enhanced by 2,2′-azobis (2-amidinopropane) dihydrochloride. Cancer Sci 2004;95(2):181–5.PubMedCrossRefGoogle Scholar
  67. 67.
    Feril LB Jr, Kondo T, Takaya K, et al. Enhanced ultrasound-induced apoptosis and cell lysis by a hypotonic medium. Int J Radiat Biol 2004;80(2):165–175.PubMedCrossRefGoogle Scholar
  68. 68.
    Frenkel V, Kimmel E, Iger Y. Ultrasound-induced cavitation damage to external epithelia of fish skin. Ultrasound Med Biol 1999;25(8):1295–1303.PubMedCrossRefGoogle Scholar
  69. 69.
    Yamashita N, Tachibana K, Ogawa K, et al. Scanning electron microscopic evaluation of the skin surface after ultrasound exposure. Anat Rec 1997;247(4):455–461.PubMedCrossRefGoogle Scholar
  70. 70.
    Liebeskind D, Bases R, Koenigsberg M, et al. Morphological changes in the surface characteristics of cultured cells after exposure to diagnostic ultrasound. Radiology 1981;138(2):419–423.PubMedGoogle Scholar
  71. 71.
    Menon GK, Bommannan DB, Elias PM. High-frequency sonophoresis: permeation pathways and structural basis for enhanced permeability. Skin Pharmacol 1994;7(3):130–139.PubMedCrossRefGoogle Scholar
  72. 72.
    Yamashita N, Ogawa K, Tachibana K, et al. Effects of ultrasound and high pressure on carcinoma and sarcoma cells. Electron Microsc 1998;4:691–692.Google Scholar
  73. 73.
    Tachibana K, Uchida T, Ogawa K, et al. Induction of cellmembrane porosity by ultrasound. Lancet 1999;353(9162):1409.PubMedCrossRefGoogle Scholar
  74. 74.
    Yamashita N, Tai T, Ogawa K, et al. Morphological study of the gastric carcinoma cell surface after ultrasound exposure. Med Bull Fukuoka Univ 2000;27:75–79.Google Scholar
  75. 75.
    Tachibana K, Uchida T, Tamura K, et al. Enhanced cytotoxic effect of Ara-C by low-intensity ultrasound to HL-60 cells. Cancer Lett 2000;149(1–2):189–94.PubMedCrossRefGoogle Scholar
  76. 76.
    Ogawa K, Tachibana K, Uchida T, et al. High-resolution scanning electron microscopic evaluation of cell-membrane porosity by ultrasound. Med Electron Microsc 2001;34(4):249–253.PubMedCrossRefGoogle Scholar
  77. 77.
    Miller DL, Quddus J. Sonoporation of monolayer cells by diagnostic ultrasound activation of contrast-agent gas bodies. Ultrasound Med Biol 2000;26(4):661–667.PubMedCrossRefGoogle Scholar
  78. 78.
    Miller DL, Quddus J. Diagnostic ultrasound activation of contrast agent gas bodies induces capillary rupture in mice. Proc Nat Acad Sci USA 2000;97(18):10179–10184.PubMedCrossRefGoogle Scholar
  79. 79.
    Prentice P, Cuschieri A, Dholakia K, et al. Membrane disruption by optically controlled microbubble cavitation. Nat Phys 2005;1:107–110.CrossRefGoogle Scholar
  80. 80.
    Yamakoshi Y, Koganezawa M. Bubble manipulation by self-organization of bubbles inside ultrasonic wave. Jpn J Appl Phys 2005;44(6B):4583–4587.CrossRefGoogle Scholar
  81. 81.
    Yamakoshi Y, Koitabashi Y, Nakajima N, et al. Yeast cell trapping in ultrasonic wave field using ultrasonic contrast agent. Jpn J Appl Phys 2006;45(5B):4712–4717.CrossRefGoogle Scholar
  82. 82.
    Blomley MJ, Cooke JC, Unger EC, et al. Microbubble contrast agents: a new era in ultrasound. BMJ 2001;322(7296):1222–1225.PubMedCrossRefGoogle Scholar
  83. 83.
    Tachibana K, Tachibana S. Application of ultrasound energy as a new drug delivery system. Jpn J Appl Phys 1999;38:3014–3019.CrossRefGoogle Scholar
  84. 84.
    Unger EC, Porter T, Culp W, et al. Therapeutic applications of lipid-coated microbubbles. Adv Drug Deliv Rev 2004;56(9):1291–1314.PubMedCrossRefGoogle Scholar
  85. 85.
    Schumann PA, Christiansen JP, Quigley RM, et al. Targeted-microbubble binding selectively to GPIIb IIIa receptors of platelet thrombi. Invest Radiol 2002;37(11):587–593.PubMedCrossRefGoogle Scholar
  86. 86.
    Tsutsui JM, Xie F, Johanning J, et al. Treatment of deeply located acute intravascular thrombi with therapeutic ultrasound guided by diagnostic ultrasound and intravenous microbubbles. J Ultrasound Med 2006;25(9):1161–1168.PubMedGoogle Scholar
  87. 87.
    Xie F, Tsutsui JM, Lof J, et al. Effectiveness of lipid microbubbles and ultrasound in declotting thrombosis. Ultrasound Med Biol 2005;31(7):979–985.PubMedCrossRefGoogle Scholar
  88. 88.
    Shohet RV, Chen S, Zhou YT, et al. Echocardiographic destruction of albumin microbubbles directs gene delivery to the myocardium. Circulation 2000;101(22):2554–2556PubMedGoogle Scholar

Copyright information

© The Japan Society of Ultrasonics in Medicine 2008

Authors and Affiliations

  • Loreto B. FerilJr
    • 1
  • Katsuro Tachibana
    • 1
  • Koichi Ogawa
    • 1
  • Kazuki Yamaguchi
    • 1
    • 2
  • Ivan G. Solano
    • 3
  • Yutaka Irie
    • 1
  1. 1.Department of AnatomyFukuoka University School of MedicineFukuokaJapan
  2. 2.Department of DermatologyFukuoka University School of MedicineFukuokaJapan
  3. 3.Department of Ergonomics, Faculty of DesignKyushu UniversityFukuokaJapan

Personalised recommendations