Skip to main content

Temporal Trends in Antimicrobial Resistance of Fecal Escherichia coli from Deer

Abstract

The changing epidemiologic role of wildlife as reservoirs of antimicrobial-resistant bacteria (ARB) is poorly understood. In this study, we characterize the phenotypic resistance of commensal Escherichia coli from fecal samples of 879 individual white-tailed (Odocoileus virginianus; WTD) over a ten-year period and analyze resistance patterns. Our results show commensal E. coli from WTD had significant linear increases in reduced susceptibility to 5 of 12 antimicrobials, including broad-spectrum cephalosporins and fluoroquinolones, from 2006 to 2016. In addition, the relative frequency distribution of minimal inhibitory concentrations of two additional antimicrobials shifted towards higher values from across the study period. The prevalence of multidrug-resistant commensal E. coli increased over the study period with a prevalence of 0%, 2.2%, and 3.7% in 2006, 2012, and 2016, respectively. WTD may be persistently and increasingly exposed to antibiotics or their residues, ARB, and/or antimicrobial resistance genes via contaminated environments like surface water receiving treated wastewater effluent.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3

References

  1. Aerts M, Faes C, Nysen R. 2011. Development of statistical methods for the evaluation of data on antimicrobial resistacne in bacterial isolates from animals and food. Scientific Report Submitted to the European Food Safety Authority.

  2. Agresti A. 2013. Categorical Data Analysis. 3rd ed. Hoboken, NJ: Wiley.

    Google Scholar 

  3. Al-Hasan MN, Lahr BD, Eckel-Passow JE, Baddour LM (2009) Antimicrobial resistance trends of Escherichia coli bloodstream isolates: a population-based study, 1998–2007. Journal of Antimicrobial Chemotherapy. 64:169–174

    CAS  Article  Google Scholar 

  4. Arnold KE, Williams NJ, Bennett M (2016) Disperse abroad in the land: the role of wildlife in the dissemination of antimicrobial resistance. Biology Letters. 12:20160137. https://doi.org/10.1098/rsbl.2016.0137

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Baggs J, Ridkin SK, Pollack LA, Srinivasan A, Jernigan JA (2016) Estimating national trends in inpatient antibiotic use among US Hospitals from 2006–2012. Journal of the American Medical Association Internal Medicine. 176:1639–1648

    PubMed  Google Scholar 

  6. Ballash GA, Lee S, Mollenkopf DF, Mathys DA, Albers AL, Sechrist E, Feicht SM, Van Balen Rubio JC, Sullivan SMP, Lee J, Wittum TE. 2020. Pulsed electric field application reduces carbapenem- and colistin- resistant microbiota and blaKPC spread in urban wastewater. Journal of Environmental Management. 265. 110529.

  7. Barbosa TM, Levy SB (2000) The impact of antibiotic use on resistance development and persistence. Drug Resistance Updates. 3:303–311

    Article  Google Scholar 

  8. Bauer KA, West JE, Balada-Llasat JM, Pancholi P, Stevenson KB, Goff DA (2010) An antimicrobial stewardship program’s impact. Clinical Infectious Diseases. 51:1074–1080

    Article  Google Scholar 

  9. Bouza E, Cercenado E (2002) Klebsiella and Enterobacter: antibiotic resistance and treatment implications. Seminars in Respiratory Infections. 17:215–230. https://doi.org/10.1053/srin.2002.34693

    Article  PubMed  Google Scholar 

  10. Boyer TC, Singer RS (2012) Quantitative Measurement of blaCMY-2 in a Longitudinal Observational Study of Dairy Cattle Treated with Ceftiofur. Foodborne Pathogens and Disease. 9:1022–1027

    CAS  Article  Google Scholar 

  11. Caprioli A, Donelli G, Falbo V, Passi C, Pagano A, Mantovani A (1991) Antimicrobial resistance and production of toxins in Escherichia coli strains from wild ruminants and the alpine marmot. Journal of Wildlife Diseases. 27:324–327

    CAS  Article  Google Scholar 

  12. Chen JY, Siu LK, Chen YH, Lu PL, Ho M, Peng CF (2001) Molecular epidemiology and mutations at gyrA and parC genes of ciprofloxacin-resistant Escherichia coli isolates from a Taiwan medical center. Microbial Drug Resistance. 7:47–53. https://doi.org/10.1089/107662901750152783

    CAS  Article  PubMed  Google Scholar 

  13. Costa D, Poeta P, Sáenz Y, Vinué L, Rojo-Bezares B, Jouini A, Zarazaga M, Rodrigues J, Torres C (2006) Detection of Escherichia coli harbouring extended-spectrum beta-lactamases of the CTX-M, TEM and SHV classes in faecal samples of wild animals in Portugal. Journal of Antimicrobial Chemotherapy. 58:1311–1312. https://doi.org/10.1093/jac/dkl415

    CAS  Article  Google Scholar 

  14. Costa D, Poeta P, Saenz Y, Vinue L, Coelho AC, Matos M, Rojo-Bezares B, Rodrigues J, Torres C (2008) Mechanisms of antibiotic resistance in Escherichia coli isolates recovered from wild animals. Microbial Drug Resistance. 14:71–77

    CAS  Article  Google Scholar 

  15. Cummings KJ, Aprea VA, Altier C (2015) Antimicrobial resistance trends among canine Escherichia coli isolates obtained from clinical samples in the northeastern USA, 2004–2011. The Canadian Veterinary Journal. 56:393–398

    PubMed  PubMed Central  Google Scholar 

  16. Dias D, Torres RT, Kronvall G, Fonseca C, Mendo S, Caetano T (2015) Assessment of antibiotic resistance of Escherichia coli isolates and screening of Salmonella spp. in wild ungulates from Portugal. Research in Microbiology. 166:584–593

    CAS  Article  Google Scholar 

  17. Gnat S, Troscianczyk A, Nowakiewicz A, Majer-Dziedzic B, Ziolkowska G, Dzidzic R, Zieba P, Teodorowski O (2015) Experimental studies of microbial populations and incidence of zoonotic pathogens in the faeces of red deer (Cervus elaphus). Letters in Applied Microbiology. 61:446–452

    CAS  Article  Google Scholar 

  18. Greig J, Rajic A, Young I, Mascarenhas M, Waddell L, LeJeune J (2015) A scoping review of the role of wildlife in the transmission of bacterial pathogens and antimicrobial resistance to the food chain. Zoonoses and Public Health. 62:269–284

    CAS  Article  Google Scholar 

  19. Holt KE, Wertheim H, Zadoks RN, Baker S, Whitehouse CA, Dance D, Jenney A, Connor TR, Hsu LY, Severin J, Brisse S, Cao H, Wilksch J, Gorrie C, Schultz MB, Edwards DJ, Nguyen KV, Nguyen TV, Dao TT, Mensink M, Minh VL, Nhu NT, Schultsz C, Kuntaman K, Newton PN, Moore CE, Strugnell RA, Thomson NR (2015) Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proceedings of the National Academy of Sciences USA 112:E3574–E3581. https://doi.org/10.1073/pnas.1501049112

    CAS  Article  Google Scholar 

  20. Jiang H, Cheng H, Liang Y, Yu S, Yu T, Fang J, Zhu C (2019) Diverse Mobile Genetic Elements and Conjugal Transferability of Sulfonamide Resistance Genes (sul1, sul2, and sul3) in Escherichia coli Isolates From Penaeus vannamei and Pork From Large Markets in Zhejiang, China. Frontiers in Microbiology 10:1787. https://doi.org/10.3389/fmicb.2019.01787

    Article  PubMed  PubMed Central  Google Scholar 

  21. Köck R, Daniels-Haardt I, Becker K, Mellmann A, Friedrich AW, Mevius D, Schwarz S, Jurke A (2018) Carbapenem-resistant Enterobacteriaceae in wildlife, food-producing, and companion animals: a systematic review. Clinical Microbiology and Infection. 24:1241–1250. https://doi.org/10.1016/j.cmi.2018.04.004

    Article  PubMed  Google Scholar 

  22. Lillehaug A, Bergsjo B, Schau J, Bruheim T, Vikoren T, Handeland K (2005) Campylobacter spp., Salmonella spp., verocytotoxic Escherichia coli, and antibiotic resistance in indicator organisms in wild cervids. Acta Veterinaria Scandinavia. 45:23–32

    Article  Google Scholar 

  23. Literak I, Dolejska M, Radimersky T, Klimes J, Friedman M, Aarestrup FM, Hasman H, Cizek A (2010) Antimicrobial-resistant faecal Escherichia coli in wild mammals in central Europe: multiresistant Escherichia coli producing extended-spectrum beta-lactamases in wild boars. Journal of Applied Microbiology. 108:1702–1711

    CAS  Article  Google Scholar 

  24. Lockhart SR, Abramson MA, Beekmann SE, Gallagher G, Riedel S, Diekema DJ, Quinn JP, Doern GV (2007) Antimicrobial resistance among Gram-Negative Bacilli Causing Infections in Intensive Care Unit Patients in the United States between 1993 and 2004. Journal of Clinical Microbiology. 45:3352–3359

    Article  Google Scholar 

  25. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B, Paterson DL, Rice LB, Stelling J, Struelens MJ, Vatopoulos A, Weber JT, Monnet DL (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology and Infection. 18:268–281

    CAS  Article  Google Scholar 

  26. Mathys DA, Mathys BA, Mollenkopf DF, Daniels JB, Wittum TE (2017) Enterobacteriaceae harboring ampC (blaCMY) and ESBL (blaCTX-M) in migratory and nonmigratory wild songbird populations on Ohio dairies. Vector-Borne and Zoonotic Diseases. 17:254–259

    Article  Google Scholar 

  27. Mathys DA, Mollenkopf DF, Feicht SM, Adams RJ, Albers AL, Stuever DM, Grooters SV, Ballash GA, Daniels JB, Wittum TE. 2019. Carbapenemase-producing Enterobacteriaceae and Aeromonas spp. present in wastewater treatment plant effluent and nearby surface waters in the US. PLOS One. https://doi.org/10.1371/journal.pone.0218650.

  28. Mazloom R, Jaberi-Douraki M, Comer JR, Volkova V (2018) Potential information loss due to categorization of minimum inhibitory concentration frequency distributions. Foodborne Pathogens and Disease. 15:44–54

    CAS  Article  Google Scholar 

  29. McGowan JE Jr (1983) Antimicrobial resistance in hospital organisms and its relation to antibiotic use. Reviews of Infectious Diseases. 5:1033–1048

    Article  Google Scholar 

  30. Meyer E, Schwab F, Schroeren-Boersch B, Gastmeier P. 2010. Dramatic increase of third-generation cephalosporin-resistant E. coli in German intensive care units: secular trends in antibiotic drug use and bacterial resistance, 2001–2008. Critical Care. 14:R113.

  31. Mollenkopf DF, Mathys DA, Feicht SM, Stull JW, Bowman AS, Daniels JB, Wittum TE. 2018. Maintenance of carbapenmase-producing Enterobacteriaceae in a farrow-to-finish swine production system. Foodborne Pathogens and Disease. 15.372–376.

  32. National Committee for Clinical Laboratory Standards Performance standards for antimicrobial susceptibility testing; sixteenth informational supplement M100, 30th edition. Wayne (PA): The Committee; 2020.

  33. Northeast Ohio Regional Sewer District. 2018. About project clean lake. Available at: https://www.neorsd.org/community/about-the-project-clean-lake-program/ (Accessed Oct. 18, 2018).

  34. Northeast Ohio Regional Sewer District. 2020. Combined Sewer Overflow (CSO) Long-Term Control Plan Consent Decree: Semi-Annual Progress Report No. 17. Available at: https://www.neorsd.org/I_Library.php?SOURCE=library/Semi-Annual_Progress_Report_17.pdf&a=download_file&LIBRARY_RECORD_ID=7596. (Accessed July 15th, 2021).

  35. Plaza-Rodríguez C, Alt K, Grobbel M, Hammerl JA, Irrgang A, Szabo I, Stingl K, Schuh E, Wiehle L, Pfefferkorn B, Naumann S, Kaesbohrer A, Tenhagen BA (2021) Wildlife as Sentinels of Antimicrobial Resistance in Germany? Frontiers in Veterinary Science. 7:627821. https://doi.org/10.3389/fvets.2020.627821

    Article  PubMed  PubMed Central  Google Scholar 

  36. Reygaert WC (2018) An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiology 4:482–501. https://doi.org/10.3934/microbiol.2018.3.482

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Rizzo L, Manaia C, Merlin C, Schwartz T, Dagot C, Ploy MC, Michael I, Fatta-Kassinos D (2013) Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review. Science of the Total Environment. 447:345–360

    CAS  Article  Google Scholar 

  38. Roberts MC (2005) Upadate on acquired tetracycline resistacne genes. FEMS Microbiology Letters. 245:195–203. https://doi.org/10.1016/j.femsle.2005.02.034

    CAS  Article  PubMed  Google Scholar 

  39. Rozwandowicz M, Brouwer MSM, Fischer J, Wagenaar JA, Gonzalez-Zorn B, Guerra B, Mevius DJ, Hordijk J (2018) Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae. Journal of Antimicrobials Chemotherapy. 73:1121–1137. https://doi.org/10.1093/jac/dkx488

    CAS  Article  Google Scholar 

  40. Salah FD, Soubeiga ST, Ouattara AK, Sadji AY, Metuor-Dabire A, Obiri-Yeboah D, Banla-Kere A, Karou S, Simpore J. 2019. Distribution of quinolone resistance gene (qnr) in ESBL-producing Escherichia coli and Klebsiella spp. in Lomé, Togo. Antimicrobial resistance and infection control8:104. https://doi.org/10.1186/s13756-019-0552-0

  41. Sayah SR, Kaneene JB, Johnson Y, Miller R (2005) Patterns of antimicrobial resistance observed in Escherichia coli isolates obtained from domestic- and wild-animal fecal samples, human septage and surface water. Applied and Environmental Microbiology. 71:1394–1404

    CAS  Article  Google Scholar 

  42. Singer RS, Patterson SK, Wallace RL (2008) Effects of Therapeutic Ceftiofur Administration to Dairy Cattle on Escherichia coli Dynamics in the Intestinal Tract. Applied Environmental Microbiology. 74:6956

    CAS  Article  Google Scholar 

  43. Smith S, Wang J, Fanning S, McMahon BJ (2014) Antimicrobial resistant bacteria in wild mammals and birds: a coincidence or cause for concern? Irish Veterinary Journal. 67:8

    Article  Google Scholar 

  44. Tadesse DA, Zhao S, Tong E, Ayers S, Singh A, Bartholomew MJ, McDermott PF (2012) Antimicrobial drug resistance in Escherichia coli from humans and food animals, United States, 1950–2002. Emerging Infectious Diseases. 18:741–749

    CAS  Article  Google Scholar 

  45. U.S. food and Drug Administration. 2016. The National Antimicrobial Resistance Monitoring System: Manual of Laboratory Mehtods, 3rd ed. Available at https://www.fda.gov/media/101423/download. (accessed February 15th, 2020).

  46. U.S. Food and Drug Administration Center for Veterinary Medicine. 2017. Summary Report on Antimicrobials sold or distributed for use in food-producing animals. Available at https://www.fda.gov/downloads/ForIndustry/UserFees/AnimalDrugUserFeeActADUFA/UCM628538.pdf (accessed Oct. 13th, 2018).

  47. United States Department of Agriculture. 2018. Ohio Agricultural Statistics 2017–2018 Annual Bulletin. Available at: https://www.nass.usda.gov/Statistics_by_State/Ohio/Publications/Annual_Statistical_Bulletin/Ohio%20bulletin%202017-2018.pdf

  48. Vittecoq M, Godreuil S, Prugnolle F, Durand P, Brazier L, Renaud N, Arnal A, Aberkane S, Jean-Pierre H, Gauthier-Clerc M, Thomas F, Renaud F (2016) Antimicrobial resistance in wildlife. Journal of Applied Ecology. 53:519–529

    Article  Google Scholar 

  49. Wasyl D, Zając M, Lalak A, Skarżyńska M, Samcik I, Kwit R, Jabłoński A, Bocian Ł, Woźniakowski G, Hoszowski A, Szulowski K (2018) Antimicrobial Resistance in Escherichia coli Isolated from Wild Animals in Poland. Microbial Drug Resistance. 24:807–815. https://doi.org/10.1089/mdr.2017.0148

    CAS  Article  PubMed  Google Scholar 

  50. Weese JS, Giguère S, Guardabassi L, Morley PS, Papich M, Ricciuto DR, Sykes JE (2015) ACVIM consensus statement on therapeutic antimicrobial use in animals and antimicrobial resistance. Journal of Veterinary Internal Medicine. 29:487–498

    CAS  Article  Google Scholar 

  51. World Health Organization. 2014. Antimicrobial resistance: global report on surveillance. Available at http://apps.who.int/iris/bitstream/10665/112642/1/9789241564748_eng.pdf (accessed Oct. 10, 2018).

  52. Wu J, Huang Y, Rao D, Zhang Y, Yang K (2018) Evidence for environmental dissemination of antibiotic resistance mediated by wild birds. Frontiers in Microbiology. 9:745

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the staff from Cleveland Metroparks and the laboratory of Thomas Wittum who provided assistance with sample collection and processing. Funding for this project was provided in part by USDA NIFA award no. 2013-68003-21282.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Thomas E. Wittum.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 168 kb)

Supplementary file2 (XLSX 71 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ballash, G.A., Munoz-Vargas, L., Albers, A. et al. Temporal Trends in Antimicrobial Resistance of Fecal Escherichia coli from Deer. EcoHealth 18, 288–296 (2021). https://doi.org/10.1007/s10393-021-01559-3

Download citation

Keywords

  • antimicrobial resistance
  • white-tailed deer
  • temporal trends
  • Escherichia coli