Skip to main content
Log in

Exotic Pinus radiata Plantations do not Increase Andes Hantavirus Prevalence in Rodents

  • Original Contribution
  • Published:
EcoHealth Aims and scope Submit manuscript

Abstract

Andes south virus (ANDV) is the etiologic agent of hantavirus cardiopulmonary syndrome (HCPS) in Chile and southern Argentina. Farm and forestry workers have been identified as a group at high risk of acquiring HCPS caused by ANDV due to their close exposure to rodents or their secretions in rural areas. Therefore, investigation on the effect of landscape composition on ANDV in wild rodents becomes relevant for disease prevention and control. In this study, we analyzed the influence of Monterey pine (Pinus radiata) plantations, an important monoculture in the global forest industry, on small mammal assemblage and on ANDV seroprevalence and abundance of seropositive rodents from central Chile. Small mammals were sampled seasonally during 2 years in native forests, adult pine plantations and young pine plantations. A total of 1630 samples from seven rodent species were analyzed for antibody detection. ANDV seroprevalence and abundance of seropositive rodents were significantly higher in the native forest compared to pine plantations. Furthermore, Monterey pine plantations decrease the abundance and relative abundance of Oligoryzomys longicaudatus (the principal reservoir of ANDV) and do not change sex ratio and distribution of age classes of this rodent species, which are variables that are important for ANDV transmission. Our findings indicate that Monterey pine plantations would not pose a higher risk of human exposure to ANDV compared to the temperate native forest. Our results can be useful for hantavirus risks assessment in human-dominated areas where ANDV is endemic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Acosta-Jamett G, Simonetti JA (2004) Habitat use by Oncifelis guigna and Pseudalopex culpaeus in a fragmented forest landscape in central Chile. Biodiversity & Conservation 13:1135–1151

    Google Scholar 

  • Barceló M (2017) Abundancia y movimiento de roedores en un paisaje forestal sometido a tala rasa. MSc Thesis, Facultad de Ciencias, Universidad de Chile

  • Burnham KP, Anderson DR (2004) Multimodel inference: understanding AIC and BIC in model selection. Sociological Methods & Research 33:261–304

    Google Scholar 

  • Bustamante RO, Simonetti JA, Grez AA, San Martín J (2005) Fragmentación y dinámica de regeneración del bosque maulino: diagnóstico actual y perspectivas futuras. In: Historia, biodiversidad y ecología de los bosques costeros de Chile, Smith-Ramírez C, Armesto JJ, Valdovinos C (editors), Santiago: Editorial Universitaria, pp 555–564

    Google Scholar 

  • Calisher CH, Mills JN, Root JJ, Doty JB, Beaty BJ (2011) The relative abundance of deer mice with antibody to Sin Nombre virus corresponds to the occurrence of hantavirus pulmonary syndrome in nearby humans. Vector-Borne and Zoonotic Diseases 11:577–582

    PubMed  Google Scholar 

  • Carroll DS, Mills JN, Montgomery JM, Bausch DG, Blair PJ, Burans JP, et al. (2005) Hantavirus pulmonary syndrome in Central Bolivia: relationships between reservoir hosts, habitats, and viral genotypes. The American Journal of Tropical Medicine and Hygiene 72:42–46

    PubMed  Google Scholar 

  • Cerda Y, Grez AA, Simonetti JA (2015) The role of understory on the abundance, movement and survival of Ceroglossus chilensis in pine plantations: an experimental test. Journal of Insect Conservation 19:119–127

    Google Scholar 

  • Clay CA, Lehmer EM, Jeor SS, Dearing MD (2009) Sin Nombre virus and rodent species diversity: a test of the dilution and amplification hypotheses. PLoS One 4:e6467

    PubMed  PubMed Central  Google Scholar 

  • Dearing MD, Dizney L (2010) Ecology of hantavirus in a changing world. Annals of the New York Academy of Sciences 1195:99–112

    PubMed  Google Scholar 

  • Estades CF, Grez AA, Simonetti JA (2012) Biodiversity in Monterey pine plantations. In: Biodiversity Conservation in Agroforestry Landscapes: Challenges and Opportunities, Simonetti JA, Grez AA, Estades CF (editors), Santiago: Editorial Universitaria, pp 77–98

    Google Scholar 

  • Fernández J, Villagra E, Yung V, Tognarelli J, Araya P, Mora J, et al. (2008) Identificación de Hantavirus Andes en Rattus norvegicus. Archivos de Medicina Veterinaria 40:295–298

    Google Scholar 

  • González LA, Murúa R, Jofré C (2000) Habitat utilization of two muroid species in relation to population outbreaks in southern temperate forests of Chile. Revista Chilena de Historia Natural 73:489–495

    Google Scholar 

  • Guterres A, de Lemos ERS (2018) Hantaviruses and a neglected environmental determinant. One Health 5:27–33

    PubMed  PubMed Central  Google Scholar 

  • Hammer Ø, Harper D, Ryan P (2001) PAST: Paleontological Statistics Software Package for education and data analysis. Palaeontologia Electronica 4:9

    Google Scholar 

  • Hjelle B, Torres-Pérez F (2010) Hantaviruses in the Americas and their role as emerging pathogens. Viruses 2:2559–2586

    PubMed  PubMed Central  Google Scholar 

  • Huang ZYX, Van Langevelde F, Estrada-Peña A, Suzán G, De Boer WF (2016) The diversity–disease relationship: evidence for and criticisms of the dilution effect. Parasitology 143:1075–1086

    CAS  PubMed  Google Scholar 

  • Keesing F, Holt RD, Ostfeld RS (2006) Effects of species diversity on disease risk. Ecology Letters 9:485–498

    CAS  PubMed  Google Scholar 

  • Khalil H, Hörnfeldt B, Evander M, Magnusson M, Olsson G, Ecke F (2014) Dynamics and drivers of hantavirus prevalence in rodent populations. Vector-Borne and Zoonotic Diseases 14:537–551

    PubMed  Google Scholar 

  • Khalil H, Ecke F, Evander M, Hörnfeldt B (2016a) Selective predation on hantavirus-infected voles by owls and confounding effects from landscape properties. Oecologia 181:597–606

    PubMed  Google Scholar 

  • Khalil H, Ecke F, Evander M, Magnusson M, Hörnfeldt B (2016b) Declining ecosystem health and the dilution effect. Scientific Reports 6:31314

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krebs CJ (1989) Ecological Methodology, New York: Harper & Row

    Google Scholar 

  • Kruger DH, Figueiredo LTM, Song JW, Klempa B (2015) Hantaviruses—globally emerging pathogens. Journal of Clinical Virology 64:128–136

    PubMed  Google Scholar 

  • Levis SC, Morzunov SP, Rowe JE, Enría DA, Pini N, Calderón G, et al. (1998) Genetic diversity and epidemiology of hantaviruses in Argentina. Journal of Infectious Diseases 177:529–538

    CAS  Google Scholar 

  • Lindenmayer DB, Hobbs RJ (2004) Fauna conservation in Australian plantation forests—a review. Biological Conservation 119:151–168

    Google Scholar 

  • Lobos G, Ferrés M, Palma RE (2005) Presencia de los géneros invasores Mus y Rattus en áreas naturales de Chile: un riesgo ambiental y epidemiológico. Revista Chilena de Historia Natural 78:113–124

    Google Scholar 

  • Luis AD, Kuenzi AJ, Mills JN (2018) Species diversity concurrently dilutes and amplifies transmission in a zoonotic host–pathogen system through competing mechanisms. Proceedings of the National Academy of Sciences 115:7979–7984

    CAS  Google Scholar 

  • Mac Nally R, Duncan RP, Thomson JR, Yen JD (2018) Model selection using information criteria, but is the “best” model any good? Journal of Applied Ecology 55:1441–1444

    Google Scholar 

  • Madhav NK, Wagoner KD, Douglass RJ, Mills JN (2007) Delayed density-dependent prevalence of Sin Nombre virus antibody in Montana deer mice (Peromyscus maniculatus) and implications for human disease risk. Vector-Borne and Zoonotic Diseases 7:353–364

    PubMed  Google Scholar 

  • Martínez-Valdebenito C, Calvo M, Vial C, Mansilla R, Marco C, Palma, RE, et al. (2014) Person-to-person household and nosocomial transmission of Andes hantavirus, Southern Chile, 2011. Emerging Infectious Diseases 20:1629–1636

    PubMed  PubMed Central  Google Scholar 

  • McFadden TN, Dirzo R (2018) Opening the silvicultural toolbox: A new framework for conserving biodiversity in Chilean timber plantations. Forest Ecology and Management 425:75-84

    Google Scholar 

  • Mead DJ (2013) Sustainable Management of Pinus radiata Plantations. FAO forestry paper no. 170, FAO, Rome

  • Medina RA, Torres-Pérez F, Galeno H, Navarrete M, Vial PA, Palma RE, et al. (2009) Ecology, genetic diversity, and phylogeographic structure of Andes virus in humans and rodents in Chile. Journal of Virology 83:2446–2459

    CAS  PubMed  Google Scholar 

  • Milholland MT, Castro-Arellano I, Suzán G, Garcia-Peña GE., Lee TE, Rohde RE, et al. (2018) Global diversity and distribution of hantaviruses and their hosts. EcoHealth 15:163–208

    PubMed  Google Scholar 

  • Mills JN (2006) Biodiversity loss and emerging infectious disease: an example from the rodent-borne hemorrhagic fevers. Biodiversity 7:9–17

    Google Scholar 

  • Mills JN, Yates TL, Childs JE, Parmenter RR, Ksiazek TG, Rollin, et al. (1995) Guidelines for working with rodents potentially infected with hantavirus. Journal of Mammalogy 76:716–722

    Google Scholar 

  • Moreira-Arce D, Vergara PM, Boutin S, Simonetti JA, Briceño C, Acosta-Jamett G (2015) Native forest replacement by exotic plantations triggers changes in prey selection of mesocarnivores. Biological Conservation 192:258–267

    Google Scholar 

  • Moreira-Arce D, Vergara PM, Boutin S, Carrasco G, Briones R, Soto GE, et al. (2016) Mesocarnivores respond to fine-grain habitat structure in a mosaic landscape comprised by commercial forest plantations in southern Chile. Forest Ecology and Management 369:135–143

    Google Scholar 

  • Muñoz A, Murúa R (1989) Efectos de la reforestación con Pinus radiata sobre la diversidad de los micromamíferos en un agroecosistema de Chile Central. Turrialba 39:143–150

    Google Scholar 

  • Murúa R, González LA (1982) Microhabitat selection in two Chilean cricetid rodents. Oecologia 52:12–15

    PubMed  Google Scholar 

  • Nahuelhual L, Carmona A, Lara A, Echeverría C, González ME (2012) Land-cover change to forest plantations: proximate causes and implications for the landscape in south-central Chile. Landscape and Urban Planning 107:12–20

    Google Scholar 

  • Niklasson B, Hornfeldt B, Lundkvist A, Bjorsten S, Leduc J (1995) Temporal dynamics of Puumala virus antibody prevalence in voles and of nephropathia epidemica incidence in humans. The American Journal of Tropical Medicine and Hygiene 53:134–140

    CAS  PubMed  Google Scholar 

  • Orrock JL, Allan BF, Drost CA (2011) Biogeographic and ecological regulation of disease: prevalence of Sin Nombre virus in island mice is related to island area, precipitation, and predator richness. The American Naturalist 177:691–697

    PubMed  Google Scholar 

  • Ortiz JC, Venegas W, Sandoval JA, Chandia P, Torres-Pérez F (2004) Hantavirus en roedores de la Octava Región de Chile. Revista Chilena de Historia Natural 77:251–256

    Google Scholar 

  • Padula P, Figueroa R, Navarrete M, Pizarro E, Cadiz R, Bellomo C, et al. (2004) Transmission study of Andes hantavirus infection in wild sigmodontine rodents. Journal of Virology 78:11972–11979

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pawson SM, Brockerhoff EG, Norton DA, Didham RK (2006) Clearfell harvest impacts on biodiversity: past research and the search for harvest size thresholds. Canadian Journal of Forest Research 36:1035–1046

    Google Scholar 

  • Pearson OP, Pearson AK (1982) Ecology and biogeography of the southern rainforest of Argentina. In: Mammalian Biology in South America, Mares MA, Genoways HH (editors), Linesville, PA: Pymatuning Laboratory of Ecology, University of Pittsburgh, pp. 129–142

    Google Scholar 

  • Pedreros AM, Valenzuela JY (2009) Mamíferos de Chile. Santiago: CEA Ediciones

    Google Scholar 

  • Piudo L, Monteverde MJ, Walker RS, Douglass RJ (2011) Rodent community structure and Andes virus infection in sylvan and peridomestic habitats in northwestern Patagonia, Argentina. Vector-Borne and Zoonotic Diseases 11:315–324

    PubMed  PubMed Central  Google Scholar 

  • Piudo L, Monteverde MJ, Walker RS, Douglass RJ (2012) Características de Oligoryzomys longicaudatus asociadas a la presencia del virus Andes (Hantavirus). Revista Chilena de Infectología 29:200–206

    PubMed  Google Scholar 

  • Poch TJ, Simonetti JA (2013) Insectivory in Pinus radiata plantations with different degree of structural complexity. Forest Ecology and Management 304:132–136

    Google Scholar 

  • Polop FJ, Provensal MC, Pini N, Levis SC, Priotto JW, Enría D, et al. (2010) Temporal and spatial host abundance and prevalence of Andes Hantavirus in Southern Argentina. EcoHealth 7:176–184

    PubMed  Google Scholar 

  • Polop F, Levis S, Pini N, Enría D, Polop J, Provensal MC (2018) Factors associated with hantavirus infection in a wild host rodent from Cholila, Chubut Province, Argentina. Mammalian Biology 88:107–113

    Google Scholar 

  • Prist PR, D’Andrea PS, Metzger JP (2017a) Landscape, climate and hantavirus cardiopulmonary syndrome outbreaks. EcoHealth 14:614–629

    PubMed  Google Scholar 

  • Prist PR, Uriarte M, Fernandes K, Metzger JP (2017b) Climate change and sugarcane expansion increase Hantavirus infection risk. PLoS Neglected Tropical Diseases 11:e0005705

    PubMed  PubMed Central  Google Scholar 

  • R Core Team (2018) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/. Accessed 18 Feb

  • Reiczigel J, Rózsa L (2005) Quantitative Parasitology 3.0. Budapest. Distributed by the authors. http://www.zoologia.hu/qp/qp.html. Accessed 15 April 2017

  • Roche B, Dobson AP, Guégan JF, Rohani P (2012) Linking community and disease ecology: the impact of biodiversity on pathogen transmission. Philosophical Transactions of the Royal Society B: Biological Sciences 367:2807–2813

    Google Scholar 

  • Rubio AV, Ávila-Flores R, Suzán G (2014) Responses of small mammals to habitat fragmentation: epidemiological considerations for rodent-borne hantaviruses in the Americas. EcoHealth 11:526–533

    PubMed  Google Scholar 

  • Rubio AV, Castro-Arellano I, Mills JN, List R, Ávila-Flores R, Suzán G (2017) Is species richness driving intra-and interspecific interactions and temporal activity overlap of a hantavirus host? An experimental test. PloS One 12:e0188060

    PubMed  Google Scholar 

  • Ruedas LA, Salazar-Bravo J, Tinnin DS, Armién B, Cáceres L, García A, et al. (2004) Community ecology of small mammal populations in Panama following an outbreak of hantavirus pulmonary syndrome. Journal of Vector Ecology 29:177–191

    PubMed  Google Scholar 

  • Saavedra B, Simonetti JA (2005) Small mammals of Maulino forest remnants, a vanishing ecosystem of South-Central Chile. Mammalia 69:337–348

    Google Scholar 

  • Sikes RS, Animal Care and Use Committee of the American Society of Mammalogists (2016) 2016 Guidelines of the American Society of Mammalogists for the use of wild mammals in research and education. Journal of Mammalogy 97:663–688

    PubMed  PubMed Central  Google Scholar 

  • Simonetti JA, Estades CF (2015) Efectos de la tala rasa sobre la biodiversidad. In: Tamaño de tala rasa en plantaciones forestales: efectos y regulación, Niklitschek M (editor), Santiago: Editorial Universitaria, pp 85–104

    Google Scholar 

  • Simonetti JA, Grez AA, Estades CF (2013) Providing habitat for native mammals through understory enhancement in forestry plantations. Conservation Biology 27:1117–1121

    PubMed  Google Scholar 

  • Sotomayor EUV, Aguilera X (2000) Epidemiología de la infección humana por hantavirus en Chile. Revista Chilena de Infectología 17:220–232

    Google Scholar 

  • Suzán G, Marcé E, Giermakowski JT, Mills JN, Ceballos G, Ostfeld RS, et al. (2009) Experimental evidence for reduced rodent diversity causing increased hantavirus prevalence. PLoS One 4:e5461

    PubMed  PubMed Central  Google Scholar 

  • Tischler ND, Rosemblatt M, Valenzuela PD (2008) Characterization of cross-reactive and serotype-specific epitopes on the nucleocapsid proteins of hantaviruses. Virus Research 135:1–9.

    CAS  PubMed  Google Scholar 

  • Torres-Pérez F, Boric-Bargetto D, Palma RE (2016) Hantavirus en Chile: Nuevos roedores con potencial importancia epidemiológica. Revista Médica de Chile 144:818–820

    PubMed  Google Scholar 

  • Valdivieso F, Gonzalez C, Najera M, Olea A, Cuiza, A, Aguilera, X, et al. (2017) Knowledge, attitudes, and practices regarding hantavirus disease and acceptance of a vaccine trial in rural communities of southern Chile. Human Vaccines & Immunotherapeutics 13:808–815

    Google Scholar 

  • Vergara PM, Simonetti JA (2004) Avian responses to fragmentation of the Maulino Forest in central Chile. Oryx 38:383–388

    Google Scholar 

  • Yahnke CJ, Meserve PL, Ksiazek TG, Mills JN (2001) Patterns of infection with Laguna Negra virus in wild populations of Calomys laucha in the central Paraguayan chaco. American Journal of Tropical Medicine and Hygiene 65:768–776

    CAS  Google Scholar 

  • Yee J, Wortman IA, Nofchissey RA, Goade D, Bennett SG, Webb JP, et al. (2003) Rapid and simple method for screening wild rodents for antibodies to Sin Nombre hantavirus. Journal of Wildlife Diseases 39:271–277

    PubMed  Google Scholar 

  • Zwolak R (2009) A meta-analysis of the effects of wildfire, clearcutting, and partial harvest on the abundance of North American small mammals. Forest Ecology and Management 258:539–545

    Google Scholar 

Download references

Acknowledgements

This work has been supported by CONICYT FONDECYT/Postdoctoral Grant No. 3160037 and additional support by FONDECYT No. 1140657. We thank M. Barceló, J. Veloso, M. Silva, M. Riquelme, A. Arzabe, H. Mendoza, C. Muñoz, L. Moreno and other volunteers for assistance during field sampling. We are grateful to S. J. Crespin for assistance with statistical analysis. We also thank C. Reyes (CONAF) and R. Zuñiga for logistical support in the field and C. Veloso for the loan of traps. We appreciate support from Dr. M. Ferrés, C. Martínez and C. Andaur for the serology analyses. We thank Forestal Masisa S.A. and Corporación Nacional Forestal for allowing us to work on their properties.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André V. Rubio.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

All applicable institutional and/or national guidelines for the care and use of animals were followed.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubio, A.V., Fredes, F. & Simonetti, J.A. Exotic Pinus radiata Plantations do not Increase Andes Hantavirus Prevalence in Rodents. EcoHealth 16, 659–670 (2019). https://doi.org/10.1007/s10393-019-01443-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10393-019-01443-1

Keywords

Navigation