Advertisement

EcoHealth

, Volume 15, Issue 3, pp 543–554 | Cite as

Using Bloodmeal Analysis to Assess Disease Risk to Wildlife at the New Northern Limit of a Mosquito Species

  • Andrea Egizi
  • Ellen S. Martinsen
  • Holly Vuong
  • Kelly I. Zimmerman
  • Ary Faraji
  • Dina M. FonsecaEmail author
Original Contribution

Abstract

The historically southeastern mosquito species Culex erraticus has over the last 30 years undergone a marked expansion north. We evaluated this species’ potential to participate in local disease cycles in the northeastern USA by identifying the vertebrate sources of blood in Cx. erraticus specimens from New Jersey. We found that the majority of bloodmeals (92.6%) were derived from birds, followed by 6.8% from mammals (of which half were human), and a single amphibian bloodmeal from a spring peeper (0.56%). Medium- and large-sized water birds from the order Pelecaniformes made up 60.4% of the bird species and 55.9% of all identified hosts. This group of birds is known enzootic hosts of arboviruses such as eastern equine encephalitis virus, for which Cx. erraticus is a competent vector. Additionally, we screened blooded mosquitoes for avian malaria parasites and identified three different lineages of Plasmodium, including what may represent a new Plasmodium species (likely a wetland bird specialist) in bloodmeals from Green Herons, a Great Egret, and a Double-Crested Cormorant. Our results support the utility of mosquito bloodmeals as sources of information about circulating wildlife pathogens and reveal the potential of range-expanding species to intensify local zoonoses and bridge enzootic pathogens to humans.

Keywords

Pelecaniformes Eastern equine encephalitis virus Xenosurveillance Plasmodium Climate change 

Notes

Acknowledgements

We are indebted to the dedicated staff of Atlantic County Mosquito Control, Cape May Mosquito Control, Mercer County Mosquito Control, and Salem County Mosquito Control for assistance with blooded mosquito collections. We also thank Prof. Robert Ricklefs for information on primers to ID and sequence bird Plasmodium; Chenoa de Freece for laboratory work and Dr. Lisa Reed for maintaining the Center for Vector Biology’s vector surveillance reports http://vectorbio.rutgers.edu/reports/vector/made possible by data provided weekly by the 21 NJ mosquito control programs and funded by the NJ State Mosquito Control Commission.

Funding

This research was supported by Multistate NE-1043 to DMF.

References

  1. Apperson, C. S., H. K. Hassan, B. A. Harrison, H. M. Savage, S. E. Aspen, A. Farajollahi, W. Crans, T. J. Daniels, R. C. Falco, M. Benedict, M. Anderson, L. McMillen, T. R. Unnasch. 2004. Host feeding patterns of established and potential mosquito vectors of West Nile virus in the Eastern United States. Vector-borne and Zoonotic Diseases 4(1): 71-82.CrossRefGoogle Scholar
  2. Armstrong, P. M., and T. G. Andreadis. 2010. Eastern equine encephalitis virus in mosquitoes and their role as bridge vectors. Emerg Infect Dis 16:1869-1874.CrossRefGoogle Scholar
  3. Barbazan, P., S. Palabodeewat, N. Nitatpattana, and J. P. Gonzalez. 2009. Detection of host virus-reactive antibodies in blood meals of naturally engorged mosquitoes. Vector Borne Zoonotic Dis 9:103-108.CrossRefGoogle Scholar
  4. Beadell, J. S., F. Ishtiaq, R. Covas, M. Melo, B. H. Warren, C. T. Atkinson, S. Bensch, G. R. Graves, Y. V. Jhala, M. A. Peirce, A. R. Rahmani, D. M. Fonseca, and R. C. Fleischer. 2006. Global phylogeographic limits of Hawaii’s avian malaria. Proceedings of the Royal Society B: Biological Sciences 273:2935.CrossRefGoogle Scholar
  5. Bensch, S., O. Hellgren, and J. Pérez-Tris. 2009. MalAvi: a public database of malaria parasites and related haemosporidians in avian hosts based on mitochondrial cytochrome b lineages. Mol Ecol Resour 9:1353-1358.CrossRefGoogle Scholar
  6. Bingham, A. M., N. D. Burkett-Cadena, H. K. Hassan, C. J. W. McClure, and T. R. Unnasch. 2014. Field Investigations of Winter Transmission of Eastern Equine Encephalitis Virus in Florida. The American Journal of Tropical Medicine and Hygiene 91:685-693.CrossRefGoogle Scholar
  7. Bingham, A. M., N. D. Burkett-Cadena, H. K. Hassan, and T. R. Unnasch. 2016. Vector Competence and Capacity of Culex erraticus (Diptera: Culicidae) for Eastern Equine Encephalitis Virus in the Southeastern United States. Journal of Medical Entomology 53:473-476.CrossRefGoogle Scholar
  8. Burkett-Cadena, N. D., H. K. Hassan, M. D. Eubanks, E. W. Cupp, and T. R. Unnasch. 2012. Winter severity predicts the timing of host shifts in the mosquito Culex erraticus. Biology Letters 8:567-569.CrossRefGoogle Scholar
  9. Burkett-Cadena, N. D., C. J. McClure, R. A. Ligon, S. P. Graham, C. Guyer, G. E. Hill, S. S. Ditchkoff, M. D. Eubanks, H. K. Hassan, and T. R. Unnasch. 2011. Host reproductive phenology drives seasonal patterns of host use in mosquitoes. PLoS One 6:e17681.CrossRefGoogle Scholar
  10. Burkett-Cadena, N. D., S. P. Graham, H. K. Hassan, C. Guyer, M. D. Eubanks, C. R. Katholi, T. R. Unnasch. 2008. Blood feeding patterns of potential arbovirus vectors of the genus Culex targeting ectothermic hosts Am J Trop Med Hyg. 79(5): 809–815.CrossRefGoogle Scholar
  11. Calvignac-Spencer, S., K. Merkel, N. Kutzner, H. Kühl, C. Boesch, P. M. Kappeler, S. Metzger, G. Schubert, and F. H. Leendertz. 2013. Carrion fly-derived DNA as a tool for comprehensive and cost-effective assessment of mammalian biodiversity. Molecular Ecology 22:915-924.CrossRefGoogle Scholar
  12. Carlson, J. S., E. Walther, R. TroutFryxell, S. Staley, L. A. Tell, R. N. M. Sehgal, C. M. Barker, and A. J. Cornel. 2015. Identifying avian malaria vectors: sampling methods influence outcomes. Parasites & Vectors 8:365.CrossRefGoogle Scholar
  13. Carpenter, S. J., and W. J. LaCasse. 1955. Mosquitoes of North America, North of Mexico. University of California Press.Google Scholar
  14. Chamberlain, R. W., R. K. Sikes, D. B. Nelson, and W. D. Sudia. 1954. Studies on the North American arthropod-borne encephalitides. VI. Quantitative determinations of virus-vector relationships. Am J Hyg 60:278-285.PubMedGoogle Scholar
  15. Cicero, C., and N. K. Johnson. 2001. Higher-level phylogeny of new world vireos (aves: vireonidae) based on sequences of multiple mitochondrial DNA genes. Mol Phylogenet Evol 20:27-40.CrossRefGoogle Scholar
  16. Cohen, S. B., K. Lewoczko, D. B. Huddleston, E. Moody, S. Mukherjee, J. R. Dunn, T. F. Jones, R. Wilson, and A. C. Moncayo. 2009. Host feeding patterns of potential vectors of eastern equine encephalitis virus at an epizootic focus in Tennessee. Am J Trop Med Hyg 81:452-456.CrossRefGoogle Scholar
  17. Crans W, McCuiston L (1987) Rare New Jersey mosquito species collected in 1986. Proceedings of the New Jersey Mosquito Control Association 89–94.Google Scholar
  18. Crans, W. J. 1970. The occurrence of Aedes flavescens (Muller), Psorophora cyanescens (Coquillett) and Culex erraticus (Dyar and Knab) in New Jersey. Mosquito News 30:655.Google Scholar
  19. Crans, W. J., J. McNelly, T. L. Schulze, and A. Main. 1986. Isolation of eastern equine encephalitis virus from Aedes sollicitans during an epizootic in southern New Jersey. J Am Mosq Control Assoc 2:68-72.PubMedGoogle Scholar
  20. Crans, W. J., and T. L. Schulze. 1986. Evidence incriminating Coquillettidia perturbans (Diptera: Culicidae) as an epizootic vector of eastern equine encephalitis. I. Isolation of EEE virus from Cq. perturbans during an epizootic among horses in New Jersey. Bulletin of the Society of Vector Ecology 11:178-184.Google Scholar
  21. Crans WJ (1989) Resting boxes as mosquito surveillance tools. Proceedings of the Eighty-Second Annual Meeting of the New Jersey Mosquito Control Association 53–57.Google Scholar
  22. Cupp, E. W., K. Klingler, H. K. Hassan, L. M. Viguers, and T. R. Unnasch. 2003. Transmission of eastern equine encephalomyelitis virus in central Alabama. Am J Trop Med Hyg 68:495-500.CrossRefGoogle Scholar
  23. Cupp, E. W., D. Zhang, X. Yue, M. S. Cupp, C. Guyer, T. R. Sprenger, and T. R. Unnasch. 2004. Identification of reptilian and amphibian blood meals from mosquitoes in an eastern equine encephalomyelitis virus focus in central Alabama. Am J Trop Med Hyg 71:272-276.CrossRefGoogle Scholar
  24. Darsie RF, Ward RA (2005) Identification and geographical distribution of the mosquitoes of North America North of Mexico. University of Florida Press, Gainesville, 383.Google Scholar
  25. Durrant KL, Beadell JS, Ishtiaq F, Graves GR, Olson SL, Gering E, Peirce MA, Milensky CM, Schmidt BK, Gebhard C, Fleischer RC (2006) Avian Hematozoa in South America: a Comparison of Temperate and Tropical Zones. American Ornithologists’ Union, ChicagoGoogle Scholar
  26. Edman, J. D., J. F. Day, and E. D. Walker. 1984. Field confirmation on the different antimosquito behavior of herons. Condor 86:91-121.CrossRefGoogle Scholar
  27. Edman, J. D., and H. W. Kale. 1971. Host behavior: its influence on the feeding success of mosquitoes. Annuals of the Entomological Society of America 64:513-516.CrossRefGoogle Scholar
  28. Egizi, A. M., A. Farajollahi, and D. M. Fonseca. 2014. Diverse host feeding on nesting birds may limit early-season West Nile virus amplification. Vector Borne Zoonotic Dis 14:447-453.CrossRefGoogle Scholar
  29. Estep, L. K., C. J. W. McClure, N. D. Burkett-Cadena, H. K. Hassan, T. L. Hicks, T. R. Unnasch, and G. E. Hill. 2011. A Multi-Year Study of Mosquito Feeding Patterns on Avian Hosts in a Southeastern Focus of Eastern Equine Encephalitis Virus. The American Journal of Tropical Medicine and Hygiene 84:718-726.CrossRefGoogle Scholar
  30. Faraji, A., A. Egizi, D. M. Fonseca, I. Unlu, T. Crepeau, S. P. Healy, and R. Gaugler. 2014. Comparative host feeding patterns of the Asian tiger mosquito, Aedes albopictus, in urban and suburban Northeastern USA and implications for disease transmission. PLoS Negl Trop Dis 8:e3037.CrossRefGoogle Scholar
  31. Farajollahi, A., and S. C. Crans. 2012. A checklist of the mosquitoes of New Jersey with notes on established invasive species. J Am Mosq Control Assoc 28:237-239.CrossRefGoogle Scholar
  32. Farajollahi, A., D. M. Fonseca, L. D. Kramer, A. M. Kilpatrick. 2011. “Bird biting” mosquitoes and human disease: A review of the role of Culex pipiens complex mosquitoes in epidemiology. Infection, genetics and evolution. 11(7):1577-85CrossRefGoogle Scholar
  33. Ferraguti, M., J. Martinez-de la Puente, J. Munoz, D. Roiz, S. Ruiz, R. Soriguer, and J. Figuerola. 2013. Avian Plasmodium in Culex and Ochlerotatus Mosquitoes from Southern Spain: Effects of Season and Host-Feeding Source on Parasite Dynamics. PLoS One 8:e66237.CrossRefGoogle Scholar
  34. Grubaugh, N. D., S. Sharma, B. J. Krajacich, L. S. Fakoli Iii, F. K. Bolay, J. W. Diclaro Ii, W. E. Johnson, G. D. Ebel, B. D. Foy, and D. E. Brackney. 2015. Xenosurveillance: A Novel Mosquito-Based Approach for Examining the Human-Pathogen Landscape. PLoS Negl Trop Dis 9:e0003628.CrossRefGoogle Scholar
  35. Haefele, H. J., I. Sidor, D. C. Evers, D. E. Hoyt, and M. A. Pokras. 2005. Hematologic and physiologic reference ranges for free-ranging adult and young common loons (Gavia immer). J Zoo Wildl Med 36:385-390.CrossRefGoogle Scholar
  36. Hassan, H. K., E. W. Cupp, G. E. Hill, C. R. Katholi, K. Klingler, and T. R. Unnasch. 2003. Avian host preference by vectors of eastern equine encephalomyelitis virus. Am J Trop Med Hyg 69:641-647.CrossRefGoogle Scholar
  37. Hunter, F. F., J. Causarano, A. Gasparotto, and B. V. Giordano. 2015. Establishment of Culex (Melanoconion) erraticus (Diptera: Culicidae) in Southern Ontario, Canada. Journal of Medical Entomology 52:509-512CrossRefGoogle Scholar
  38. Kent, R. J. 2009. Molecular methods for arthropod bloodmeal identification and applications to ecological and vector-borne disease studies. Mol Ecol Resour 9:4-18.CrossRefGoogle Scholar
  39. Kilpatrick, A. M., P. Daszak, M. J. Jones, P. P. Marra, and L. D. Kramer. 2006. Host heterogeneity dominates West Nile virus transmission. Proceedings of the Royal Society B: Biological Sciences 273:2327-2333.CrossRefGoogle Scholar
  40. Kim, K., and Y. Tsuda. 2015. Sporogony and sporozoite rates of avian malaria parasites in wild Culex pipiens pallens and C inatomii in Japan. Parasites & Vectors 8:633.CrossRefGoogle Scholar
  41. Kim, K., Y. Tsuda, T. Sasaki, M. Kobayashi, and Y. Hirota. 2009. Mosquito blood-meal analysis for avian malaria study in wild bird communities: laboratory verification and application to Culex sasai (Diptera: Culicidae) collected in Tokyo, Japan. Parasitology Research 105:1351-1357.CrossRefGoogle Scholar
  42. Kocher, T. D., W. K. Thomas, A. Meyer, S. V. Edwards, S. Pääbo, F. X. Villablanca, and A. C. Wilson. 1989. Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proceedings of the National Academy of Sciences 86:6196-6200.CrossRefGoogle Scholar
  43. Komar, N., D. J. Dohm, M. J. Turell, and A. Spielman. 1999. Eastern equine encephalitis virus in birds: relative competence of European starlings (Sturnus vulgaris). Am J Trop Med Hyg 60:387-391.CrossRefGoogle Scholar
  44. Komar, N., S. Langevin, S. Hinten, N. Nemeth, E. Edwards, D. Hettler, B. Davis, R. Bowen, and M. Bunning. 2003. Experimental infection of North American birds with the New York 1999 strain of West Nile virus. Emerg Infect Dis 9:311-322.CrossRefGoogle Scholar
  45. Kulasekera, V. L., L. Kramer, R. S. Nasci, F. Mostashari, B. Cherry, S. C. Trock, C. Glaser, and J. R. Miller. 2001. West Nile virus infection in mosquitoes, birds, horses, and humans, Staten Island, New York, 2000. Emerg Infect Dis 7:722-725.CrossRefGoogle Scholar
  46. LaDeau, S. L., A. M. Kilpatrick, and P. P. Marra. 2007. West Nile virus emergence and large-scale declines of North American bird populations. Nature 447:710-713.CrossRefGoogle Scholar
  47. Lapointe, D. A., C. T. Atkinson, and M. D. Samuel. 2012. Ecology and conservation biology of avian malaria. Ann N Y Acad Sci 1249:211-226.CrossRefGoogle Scholar
  48. Leighton, B. J., B. D. Roitberg, P. Belton, and C. A. Lowenberger. 2008. Host antibodies in mosquito bloodmeals: a potential tool to detect and monitor infectious diseases in wildlife. J Med Entomol 45:470-475.CrossRefGoogle Scholar
  49. Lounibos, L. P. 2002. Invasions by insect vectors of human disease. Annu Rev Entomol 47:233-266.CrossRefGoogle Scholar
  50. Martinsen ES, McInerney N, Brightman H, Ferebee K, Walsh T, McShea WJ, Forrester TD, Ware L, Joyner PH, Perkins SL, Latch EK, Yabsley MJ, Schall JJ, Fleischer RC (2016) Hidden in plain sight: cryptic and endemic malaria parasites in North American white-tailed deer (Odocoileus virginianus). Science Advances 2:1501486CrossRefGoogle Scholar
  51. Martinsen, E. S., I. F. Sidor, S. Flint, J. Cooley, and M. A. Pokras. 2017. Documentation of Malaria Parasite (Plasmodium spp.) Infection and Associated Mortality in a Common Loon (Gavia immer). J Wildl Dis 53:859-863.CrossRefGoogle Scholar
  52. McLean, R. G., W. J. Crans, D. F. Caccamise, J. McNelly, L. J. Kirk, C. J. Mitchell, and C. H. Calisher. 1995. Experimental infection of wading birds with eastern equine encephalitis virus. J Wildl Dis 31:502-508.CrossRefGoogle Scholar
  53. McNelly JR, Crans WJ (1989) The larval habitat of Culex erraticus in southern New Jersey. Proceedings of the New Jersey Mosquito Control Association 63–64.Google Scholar
  54. Mehus, J. O., and J. A. Vaughan. 2013. Molecular identification of vertebrate and hemoparasite DNA within mosquito blood meals from eastern North Dakota. Vector Borne Zoonotic Dis 13:818-824.CrossRefGoogle Scholar
  55. Mendenhall, I. H., J. Bahl, M. J. Blum, and D. M. Wesson. 2012. Genetic structure of Culex erraticus populations across the Americas. J Med Entomol 49:522-534.CrossRefGoogle Scholar
  56. Mills, J. N., K. L. Gage, and A. S. Khan. 2010. Potential influence of climate change on vector-borne and zoonotic diseases: a review and proposed research plan. Environ Health Perspect 118:1507-1514.CrossRefGoogle Scholar
  57. Molaei, G., A. Farajollahi, P. M. Armstrong, J. Oliver, J. J. Howard, T. G. Andreadis. 2009. Identification of bloodmeals in Anopheles quadrimaculatus and Anopheles punctipennis from eastern equine encephalitis virus foci in northeastern U.S.A. Medical and Veterinary Entomology. 23(4): 350-356.CrossRefGoogle Scholar
  58. Ng, T. F., D. L. Willner, Y. W. Lim, R. Schmieder, B. Chau, C. Nilsson, S. Anthony, Y. Ruan, F. Rohwer, and M. Breitbart. 2011. Broad surveys of DNA viral diversity obtained through viral metagenomics of mosquitoes. PLoS One 6:e20579.CrossRefGoogle Scholar
  59. NJDEP (2012) NJ Endangered and Nongame Species Program Special Concern—Species Status Listing Endangered and Nongame Species Program, Division of Fish and Wildlife, New Jersey Department of Environmental Protection, http://www.state.nj.us/dep/fgw/ensp/pdf/spclspp.pdf
  60. Oliveira, A., C. R. Katholi, N. Burkett-Cadena, H. K. Hassan, S. Kristensen, and T. R. Unnasch. 2011. Temporal analysis of feeding patterns of Culex erraticus in central Alabama. Vector Borne Zoonotic Dis 11:413-421.CrossRefGoogle Scholar
  61. Pecor, J. E., V. L. Mallampalli, R. E. Harbach, and E. L. Peyton. 1992. Catalog and Illustrated Review of the Subgenus Melanoconion of Culex (Diptera: Culicidae. Contributions of the American Entomological Institute 27:1-228.Google Scholar
  62. Purse, B. V., P. S. Mellor, D. J. Rogers, A. R. Samuel, P. P. Mertens, and M. Baylis. 2005. Climate change and the recent emergence of bluetongue in Europe. Nat Rev Microbiol 3:171-181.CrossRefGoogle Scholar
  63. Rhyan, J. C., and T. R. Spraker. 2010. Emergence of diseases from wildlife reservoirs. Vet Pathol 47:34-39.CrossRefGoogle Scholar
  64. Robertson, L. C., S. Prior, C. S. Apperson, and W. S. Irby. 1993. Bionomics of Anopheles quadrimaculatus and Culex erraticus (Diptera: Culicidae) in the Falls Lake basin, North Carolina: seasonal changes in abundance and gonotrophic status, and host-feeding patterns. Journal of Medical Entomology 30:689-698.CrossRefGoogle Scholar
  65. Rochlin, I., D. V. Ninivaggi, M. L. Hutchinson, and A. Farajollahi. 2013. Climate change and range expansion of the Asian tiger mosquito (Aedes albopictus) in Northeastern USA: implications for public health practitioners. PLoS One 8:e60874.CrossRefGoogle Scholar
  66. Ronquist, F., and J. P. Huelsenbeck. 2003. Mrbayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574CrossRefGoogle Scholar
  67. Rovie-Ryan, J. J., Z. Z. Zainuddin, W. Marni, A. H. Ahmad, L. N. Ambu, and J. Payne. 2013. Blood meal analysis of tabanid fly after it biting the rare Sumatran rhinoceros. Asian Pac J Trop Biomed 3:95-99.CrossRefGoogle Scholar
  68. Schnell, I. B., P. F. Thomsen, N. Wilkinson, M. Rasmussen, L. R. D. Jensen, E. Willerslev, M. F. Bertelsen, and M. T. P. Gilbert. 2012. Screening mammal biodiversity using DNA from leeches. Current Biology 22:R262-R263.CrossRefGoogle Scholar
  69. Scott TW, Weaver SC (1989) Eastern equine encephalomyelitis virus: epidemiology and evolution of mosquito transmission. Advances in Virus Research 37:277–328.CrossRefGoogle Scholar
  70. Seimon, T. A., M. Gilbert, S. Neabore, C. Hollinger, A. Tomaszewicz, A. Newton, T. Chang, and D. McAloose. 2016. Avian Hemosporidian Parasite Lineages in Four Species of Free-ranging Migratory Waterbirds from Mongolia, 2008. Journal of Wildlife Diseases 52:682-687.CrossRefGoogle Scholar
  71. Simberloff, D., L. Souza, M. A. Nuñez, M. N. Barrios-Garcia, and W. Bunn. 2011. The natives are restless, but not often and mostly when disturbed. Ecology 93:598-607.CrossRefGoogle Scholar
  72. Spalding, M. G., R. G. McLean, J. H. Burgess, and L. J. Kirk. 1994. Arboviruses in water birds (Ciconiiformes, Pelecaniformes) from Florida. J Wildl Dis 30:216-221.CrossRefGoogle Scholar
  73. Stamm, D. D. 1958. Studies on the ecology of equine encephalomyelitis. Am J Public Health Nations Health 48:328-335.CrossRefGoogle Scholar
  74. Schwartz VD, Golden M (2002) Field guide to repriles and amphibians of New Jersey. New Jersey Division of Fish and Wildlife, New Jersey, 22.Google Scholar
  75. Tuten, H. 2011. Zoos as experiment environments: Biology of larval and adult mosquitoes (Diptera: Culicidae). Clemson University, Clemson.Google Scholar
  76. Valkiunas, G. 2005. Avian Malaria Parasites and other Haemosporidia. Boca Raton: CRC Press.Google Scholar
  77. Vanstreels, R. E. T., R. P. da Silva-Filho, C. K. M. Kolesnikovas, R. C. C. Bhering, V. Ruoppolo, S. Epiphanio, M. Amaku, F. C. F. Junior, É. M. Braga, and J. L. Catão-Dias. 2015. Epidemiology and pathology of avian malaria in penguins undergoing rehabilitation in Brazil. Veterinary Research 46:30.CrossRefGoogle Scholar
  78. Waits, L. P., and D. Paetkau. 2005. Noninvasive genetic sampling tools for wildlife biologists: A review of applications and recommendations for accurate data collection. The Journal of Wildlife Management 69:1419-1433.CrossRefGoogle Scholar
  79. Waldenström, J., S. Bensch, D. Hasselquist, and O. Ostman. 2004. A new nested polymerase chain reaction method very efficient in detecting Plasmodium and Haemoproteus infections from avian blood. J Parasitol 90:191-194.CrossRefGoogle Scholar
  80. Zwickl DJ (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Ph.D. dissertation, The University of Texas at Austin.Google Scholar

Copyright information

© EcoHealth Alliance 2018

Authors and Affiliations

  • Andrea Egizi
    • 1
    • 2
  • Ellen S. Martinsen
    • 3
  • Holly Vuong
    • 1
    • 4
  • Kelly I. Zimmerman
    • 1
    • 5
  • Ary Faraji
    • 1
    • 6
  • Dina M. Fonseca
    • 1
    • 3
    Email author
  1. 1.Center for Vector Biology, Department of EntomologyRutgers UniversityNew BrunswickUSA
  2. 2.Tick-Borne Disease LaboratoryMonmouth County Mosquito Control DivisionTinton FallsUSA
  3. 3.Center for Conservation GenomicsSmithsonian Conservation Biology InstituteWashingtonUSA
  4. 4.National Youth Science ForumActonAustralia
  5. 5.Department of Earth and Environmental StudiesMontclair State UniversityMontclairUSA
  6. 6.Salt Lake City Mosquito Abatement DistrictSalt Lake CityUSA

Personalised recommendations