Abstract
Worldwide, Norway rats (Rattus norvegicus) carry a number of zoonotic pathogens. Many studies have identified rat-level risk factors for pathogen carriage. The objective of this study was to examine associations between abundance, microenvironmental and weather features and Clostridium difficile, antimicrobial-resistant (AMR) Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA) carriage in urban rats. We assessed city blocks for rat abundance and 48 microenvironmental variables during a trap-removal study, then constructed 32 time-lagged temperature and precipitation variables and fitted multivariable logistic regression models. The odds of C. difficile positivity were significantly lower when mean maximum temperatures were high (≥ 12.89°C) approximately 3 months before rat capture. Alley pavement condition was significantly associated with AMR E. coli. Rats captured when precipitation was low (< 49.40 mm) in the 15 days before capture and those from blocks that contained food gardens and institutions had increased odds of testing positive for MRSA. Different factors were associated with each pathogen, which may reflect varying pathogen ecology including exposure and environmental survival. This study adds to the understanding of how the microenvironment and weather impacts the epidemiology and ecology of zoonotic pathogens in urban ecosystems, which may be useful for surveillance and control activities.
This is a preview of subscription content, access via your institution.
References
Allen HK, Donato J, Wang HH, Cloud-Hansen KA, Davies J, Handelsman J (2010) Call of the wild: antibiotic resistance genes in natural environments. Nature Reviews Microbiology 8:251–259; DOI: https://doi.org/10.1038/nrmicro2312
Al-Rawahi GN, Schreader AG, Porter SD, Roscoe DL, Gustafson R, Bryce EA (2008) Methicillin-resistant Staphylococcus aureus nasal carriage among injection drug users: six years later. Journal of Clinical Microbiology 46:477–479. https://doi.org/10.1128/JCM.01596-07
Ayral F, Artois J, Zilber A-L, Widén F, Pounder KC, Aubert D, Bicout DJ, Artois M (2015) The relationship between socioeconomic indices and potentially zoonotic pathogens carried by wild Norway rats: a survey in Rhône, France (2010-2012). Epidemiology and Infection 143:586–599; DOI: https://doi.org/10.1017/s0950268814001137
Barrett MA, Bouley TA (2015) Need for enhanced environmental representation in the implementation of One Health. EcoHealth 12:212–219; DOI: https://doi.org/10.1007/s10393-014-0964-5
Beard-Pegler MA, Stubbs E, Vickery AM (1988) Observations on the resistance to drying of staphylococcal strains. Journal of Medical Microbiology 26:251–255; DOI: https://doi.org/10.1099/00222615-26-4-251
Bondo KJ, Pearl DL, Janecko N, Boerlin P, Reid-Smith RJ, Parmley J, Jardine CM (2016) Epidemiology of antimicrobial resistance in Escherichia coli isolates from raccoons (Procyon lotor) and the environment on swine farms and conservation areas in southern Ontario. PLoS ONE 11:e0165303–16; DOI: https://doi.org/10.1371/journal.pone.0165303
Bondo KJ, Weese JS, Rouseau J, Jardine CM (2015) Longitudinal study of Clostridium difficile shedding in raccoons on swine farms and conservation areas in Ontario, Canada. BMC Veterinary Research 11:254. https://doi.org/10.1186/s12917-015-0563-x
Dancer SJ (2008) Importance of the environment in meticillin-resistant Staphylococcus aureus acquisition: the case for hospital cleaning. The Lancet Infectious Diseases 8:101–113; DOI: https://doi.org/10.1016/s1473-3099(07)70241-4
Davis DE, Emlen JT, Stokes AW (1948) Studies on home range in the brown rat. Journal of Mammalogy 29:207–225.
Deng K, Plaza-Garrido A, Torres JA, Paredes-Sabja D (2015) Survival of Clostridium difficile spores at low temperatures. Food Microbiology 46:218–221; DOI: https://doi.org/10.1016/j.fm.2014.07.022
Dohoo IR, Martin W, Stryhn, HE (2009) Veterinary Epidemiologic Research (2nd ed.). Charlottetown, PEI: VER Inc.
Easterbrook JD, Kaplan JB, Vanasco NB, Reeves WK, Purcell RH, Kosoy MY, Glass GE, Watson J, Klein SL (2007) A survey of zoonotic pathogens carried by Norway rats in Baltimore, Maryland, USA. Epidemiology and Infection 135:1192–1199; DOI: https://doi.org/10.1017/s0950268806007746
Ewers C, Bethe A, Semmler T, Guenther S, Wieler LH (2012) Extended-spectrum -lactamase-producing and AmpC-producing Escherichia coli from livestock and companion animals, and their putative impact on public health: a global perspective. Clinical Microbiology and Infection 18:646–655; DOI: https://doi.org/10.1111/j.1469-0691.2012.03850.x
Fitzgerald JR (2012) Livestock-associated Staphylococcus aureus: origin, evolution and public health threat. Trends in Microbiology 20:192–198; DOI: https://doi.org/10.1016/j.tim.2012.01.006
Feng AYT, Himsworth CG (2014) The secret life of the city rat: a review of the ecology of urban Norway and black rats (Rattus norvegicus and Rattus rattus). Urban Ecosystems 17:149–162. https://doi.org/10.1007/s11252-013-0305-4
Forsberg KJ, Reyes A, Wang B, Selleck EM, Sommer MOA, Dantas G (2012) The shared antibiotic resistome of soil bacteria and human pathogens. Science 337:1107–1111; DOI: https://doi.org/10.1126/science.1220761
Guan P, Huang D, He M, Shen T, Guo J, Zhou B (2009) Investigating the effects of climatic variables and reservoir on the incidence of hemorrhagic fever with renal syndrome in Huludao City, China: a 17-year data analysis based on structure equation model. BMC Infectious Diseases 9:109. https://doi.org/10.1186/1471-2334-9-109
Hensgens MPM, Keessen EC, Squire MM, Riley TV, Koene MGJ, de Boer E, Lipman LJA, Kuijper EJ (2012) Clostridium difficile infection in the community: a zoonotic disease? Clinical Microbiology and Infection 18:635–645; DOI: https://doi.org/10.1111/j.1469-0691.2012.03853.x
Himsworth CG, Parsons KL, Jardine C, Patrick DM (2013a) Rats, cities, people, and pathogens: a systematic review and narrative synthesis of literature regarding the ecology of rat-associated zoonoses in urban centers. Vector Borne and Zoonotic Diseases 6:349–359. https://doi.org/10.1089/vbz.2012.1195
Himsworth CG, Patrick DM, Parsons K, Feng A, Weese JS (2013b) Methicillin-resistant Staphylococcus pseudintermedius in rats. Emerging Infectious Diseases 19:169–170. https://doi.org/10.3201/eid1901.120897
Himsworth CG, Miller RR, Montoya V, Hoang L, Romney MG, Al-Rawahi GN, Kerr T, Jardine CM, Patrick DM, Tang P, Weese JS (2014a) Carriage of methicillin-resistant Staphylococcus aureus by wild urban Norway rats (Rattus norvegicus). PLoS ONE 9:e87983. https://doi.org/10.1371/journal.pone.0087983
Himsworth CG, Parsons KL, Feng AYT, Kerr T, Jardine CM, Patrick DM (2014b) A mixed methods approach to exploring the relationship between Norway rat (Rattus norvegicus) abundance and features of the urban environment in an inner-city neighborhood of Vancouver, Canada. PLoS ONE 9:e97776. https://doi.org/10.1371/journal.pone.0097776
Himsworth CG, Patrick DM, Mak S, Jardine CM, Tang P, Weese JS (2014c) Carriage of Clostridium difficile by wild urban Norway rats (Rattus norvegicus) and black rats (Rattus rattus). Applied and Environmental Microbiology 80:1299–1305. https://doi.org/10.1128/AEM.03609-13
Himsworth CG, Zabek E, Desruisseau A, Parmley EJ, Reid-Smith R, Jardine CM, Tang P, Patrick DM (2015) Prevalence and characteristics of Escherichia coli and Salmonella spp. in the feces of wild urban Norway and black rats (Rattus norvegicus and Rattus rattus) from an inner-city neighborhood of Vancouver, Canada. Journal of Wildlife Diseases 51:589–600. https://doi.org/10.7589/2014-09-242
Huijbers PMC, Blaak H, de Jong MCM, Graat EAM, Vandenbroucke-Grauls CMJE, de Roda Husman AM (2015) Role of the environment in the transmission of antimicrobial resistance to humans: a review. Environmental Science and Technology 49:11993–12004; DOI: https://doi.org/10.1021/acs.est.5b02566
Kramer A, Schwebke I, Kampf G (2006) How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infectious Diseases 6:130. https://doi.org/10.1186/1471-2334-6-130
Leekha S, Diekema DJ, Perencevich EN (2014) Seasonality of staphylococcal infections. Clinical Microbiology and Infection 18:927–933; DOI: https://doi.org/10.1111/j.1469-0691.2012.03955.x
Loewen K, Schreiber Y, Kirlew M, Bocking N, Kelly L (2017) Community-associated methicillin-resistant Staphylococcus aureus infection: Literature review and clinical update. Canadian Family Physician 63:512–520; DOI: https://doi.org/10.1001/jama.290.22.2976
McCallum H, Barlow N, Hone J (2001) How should pathogen transmission be modelled? Trends in Ecology and Evolution 16:295–300; DOI: https://doi.org/10.1016/s0169-5347(01)02144-9
McKinney ML (2006) Urbanization as a major cause of biotic homogenization. Biological Conservation 127:247–260; DOI: https://doi.org/10.1016/j.biocon.2005.09.005
Moono P, Foster NF, Hampson DJ, Knight DR, Bloomfield LE, Riley TV (2016) Clostridium difficile infection in production animals and avian species: a review. Foodborne Pathogens and Disease 13:647–655; DOI: https://doi.org/10.1089/fpd.2016.2181
Muñoz-Zanzi C, Mason M, Encina C, Gonzalez M, Berg S (2014) Household characteristics associated with rodent presence and Leptospira infection in rural and urban communities from Southern Chile. American Journal of Tropical Medicine and Hygiene 90:497–506; DOI: https://doi.org/10.4269/ajtmh.13-0334
Rothenburger JL, Himsworth CH, Nemeth NM, Pearl DL, Jardine CM (2017a) Environmental factors and zoonotic pathogen ecology in urban exploiter species. EcoHealth 14:630–641. https://doi.org/10.1007/s10393-017-1258-5
Rothenburger JL, Himsworth CG, Nemeth NM, Pearl DL, Jardine CM (2017b) Beyond abundance: how microenvironmental features and weather influence Bartonella tribocorum prevalence in urban Norway rats (Rattus norvegicus). Zoonoses and Public Health. https://doi.org/10.1111/zph.12440
Szmolka A, Nagy B (2013) Multidrug resistant commensal Escherichia coli in animals and its impact for public health. Frontiers in Microbiology 4:258. https://doi.org/10.3389/fmicb.2013.00258
Usui M, Kawakura M, Yoshizawa N, San LL, Nakajima C, Suzuki Y, Tamura Y (2017) Survival and prevalence of Clostridium difficile in manure compost derived from pigs. Anaerobe 43:15–20; DOI: https://doi.org/10.1016/j.anaerobe.2016.11.004
van den Bogaard A, Stobberingh, EE (2000). Epidemiology of resistance to antibiotics links between animals and humans. International Journal of Antimicrobial Agent 14:327–335; DOI: https://doi.org/10.1016/s0924-8579(00)00145-x
Warriner K, Xu C, Habash M, Sultan S, Weese SJ (2016) Dissemination of Clostridium difficile in food and the environment: significant sources of C. difficile community-acquired infection? Journal of Applied Microbiology 122:542–553. https://doi.org/10.1111/jam.13338
Weese JS (2010) Methicillin-resistant Staphylococcus aureus in animals. ILAR Journal 51:233–244
Yokoyama E, Maruyama S, Kabeya H, Hara S, Sata S, Kuroki T, Yamamoto T (2007) Prevalence and genetic properties of Salmonella enterica serovar typhimurium definitive phage type 104 isolated from Rattus norvegicus and Rattus rattus house rats in Yokohama City, Japan. Applied and Environmental Microbiology 73:2624–2630
Acknowledgements
We wish to thank Kirbee Parsons and Alice Feng for their assistance with environmental data and rat collection and Victoria Chang and Heather Anholt for their assistance with sample collection. We thank J. Scott Weese for pathogen testing and Kate Bishop-Williams for her insight into assessing time-lagged weather data. The fieldwork was made possible by the assistance of the City of Vancouver (Murray Wightman and Stuart McMillan), the Urban Health Research Initiative, the Vancouver Injection Drug Users Study and the Vancouver Area Network of Drug Users. J. Rothenburger’s research is supported by the following: Natural Sciences and Engineering Research Council Alexander Graham Bell Canada Graduate Scholarship-Doctoral, Canadian Federation of University Women Dr. Margaret McWilliams Pre-Doctoral Fellowship, Imperial Order Daughters of the Empire War Memorial Scholarship, Ontario Veterinary College Graduate Student Fellowship and the University of Guelph Dean’s Tri-Council Scholarship. The Canadian Institutes of Health Research funded this study (MOP– 119530).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
All the authors declare that they have no conflict of interest.
Ethical approval
We followed all applicable institutional and/or national guidelines for the care and use of animals and the University of British Columbia Animal Care Committee (A11-0087) approved this study.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Rothenburger, J.L., Himsworth, C.G., Nemeth, N.M. et al. Environmental Factors Associated with the Carriage of Bacterial Pathogens in Norway Rats. EcoHealth 15, 82–95 (2018). https://doi.org/10.1007/s10393-018-1313-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10393-018-1313-x
Keywords
- Disease ecology
- Environment
- Epidemiology
- Norway rat
- Rattus
- Zoonotic