Advertisement

EcoHealth

, Volume 14, Issue 4, pp 851–864 | Cite as

Batrachochytrium salamandrivorans and the Risk of a Second Amphibian Pandemic

  • Tiffany A. Yap
  • Natalie T. Nguyen
  • Megan Serr
  • Alexander Shepack
  • Vance T. Vredenburg
Review

Abstract

Amphibians are experiencing devastating population declines globally. A major driver is chytridiomycosis, an emerging infectious disease caused by the fungal pathogens Batrachochytrium dendrobatidis (Bd) and Batrachochytrium salamandrivorans (Bsal). Bd was described in 1999 and has been linked with declines since the 1970s, while Bsal is a more recently discovered pathogen that was described in 2013. It is hypothesized that Bsal originated in Asia and spread via international trade to Europe, where it has been linked to salamander die-offs. Trade in live amphibians thus represents a significant threat to global biodiversity in amphibians. We review the current state of knowledge regarding Bsal and describe the risk of Bsal spread. We discuss regional responses to Bsal and barriers that impede a rapid, coordinated global effort. The discovery of a second deadly emerging chytrid fungal pathogen in amphibians poses an opportunity for scientists, conservationists, and governments to improve global biosecurity and further protect humans and wildlife from a growing number of emerging infectious diseases.

Keywords

Batrachochytrium salamandrivorans (BsalBsal Task Force Chytridiomycosis Amphibian pandemic Emerging infectious diseases in wildlife Wildlife disease Global biosecurity 

Notes

Acknowledgements

This research was funded in part through the Belmont Forum Project People, Pollution and Pathogens (P 3 ): NSF 1633948 to VT Vredenburg. We thank Jennifer R. Ballard, Deanna H. Olson, Jeffrey M. Lorch, Jonathan Sleeman, Thomas B. Lentz, and anonymous reviewers for valuable suggestions and feedback. We thank the IUCN and Michelle Koo at AmphibiaWeb for providing us with species range and richness data. We thank the Museum of Vertebrate Zoology at the University of California, Berkeley for technical support. We thank Ben de Jesus for design help with the figure. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the US Government.

References

  1. Alroy J (2015) Current extinction rates of reptiles and amphibians. Proceedings of the National Academy of Sciences 112:13003–13008; doi: 10.1073/pnas.1508681112 CrossRefGoogle Scholar
  2. AmphibiaWeb (2016) Information on Amphibian Biology and Conservation. [Web Application]. http://amphibiaweb.org/
  3. Arribas R, Díaz-Paniagua C, Caut S, Gomez-Mestre I (2015) Stable isotopes reveal trophic partitioning and trophic plasticity of a larval amphibian guild. PLoS One 10(6); doi: 10.1371/journal.pone.0130897 Google Scholar
  4. Balàž V, Schmidt CG, Murray K, Carnesecchi E, Garcia A, Gervelmeyer A, et al. (2017) Scientific and technical assistance concerning the survival, establishment and spread of Batrachochytrium salamandrivorans (Bsal) in the EU. EFSA Journal. doi: 10.2903/j.efsa.2017.4739
  5. Bales EK, Hyman OJ, Loudon AH, Harris RN, Lipps G, Chapman E, Errell KA (2015) Pathogenic chytrid fungus Batrachochytrium dendrobatidis, but not B. salamandrivorans, detected on eastern hellbenders. PLoS One 10:1–9; doi: 10.1371/journal.pone.0116405 Google Scholar
  6. Barnosky AD, Matzke N, Tomiya S, Wogan GOU, Swartz B, Quental TB,… Ferrer EA (2011). Has the Earth’s sixth mass extinction already arrived? Nature 471:51-57; doi: 10.1038/nature09678 CrossRefPubMedGoogle Scholar
  7. Berger L, Speare R, Daszak P, Green DE, Cunningham, AA, Goggin C,… Parkes H (1998) Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. Proceedings of the National Academy of Sciences 95:9031-9036CrossRefGoogle Scholar
  8. Berger L, Speare R, Hines HB, Marantelli G, Hyatt AD, McDonald KR, …Tyler MJ (2004) Effect of season and temperature on mortality in amphibians due to chytridiomycosis. Australian Veterinary Journal 82:434–9CrossRefPubMedGoogle Scholar
  9. Berger L, Roberts AA, Voyles J, Longcore JE, Murray KA, Skerratt LF (2016) History and recent progress on chytridiomycosis in amphibians. Fungal Ecology 19:89–99; doi: 10.1016/j.funeco.2015.09.007 CrossRefGoogle Scholar
  10. Best ML, Welsh HH (2014) The trophic role of a forest salamander: impacts on invertebrates, leaf litter retention, and the humification process. Ecosphere 5:1–19; doi: 10.1890/ES13-00302.1 CrossRefGoogle Scholar
  11. Blehert, DS, Hicks AC, Behr M, Meteyer CU, Berlowski-Zier BM, Buckles EL,… Stone WB (2009) Bat white-nose syndrome: an emerging fungal pathogen? Science, 323:227CrossRefPubMedGoogle Scholar
  12. Blooi M, Pasmans F, Longcore JE, Spitzen-van der Sluijs A, Vercammen F, Martel A (2013) Duplex real-time PCR for rapid simultaneous detection of Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans in amphibian samples. Journal of Clinical Microbiology 51:4173–4177. doi: 10.1128/JCM.02313-13 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Blooi M, Martel, Haesebrouck F, Vercammen F, Bonte D, Pasmans F (2015) Treatment of urodelans based on temperature dependent infection dynamics of Batrachochytrium salamandrivorans. Scientific Reports 5:8037. doi: 10.1038/srep08037 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Blooi M, Pasmans F, Rouffaer L, Haesebrouck F, Vercammen F, Martel A (2015) Successful treatment of Batrachochytrium salamandrivorans infections in salamanders requires synergy between voriconazole, polymyxin E and temperature. Scientific Reports 5:11788. doi: 10.1038/srep11788 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Burrowes PA, De la Riva I (2017) Detection of the amphibian chytrid fungus Batrachochytrium dendrobatidis in museum specimens of Andean aquatic birds: implications for pathogen dispersal. Journal of Wildlife Diseases 53(2): 1–7. doi: 10.7589/2016-04-074 CrossRefGoogle Scholar
  16. Carey C, Bradford DF, Brunner JL, Collins JP, Davidson, EW, Longcore JE,… Schock, DM (2004) Biotic factors in amphibian population declines. Amphibian decline: an integrated analysis of multiple stressor effects. Society of Environmental Toxicology and Chemistry, Pensacola, Florida. 2004:153-208Google Scholar
  17. Catenazzi, A (2015) State of the World’s Amphibians. Annual Review of Environment and Resources 40, 91-119; doi: 10.1146/annurev-environ-102014-021358 CrossRefGoogle Scholar
  18. Ceballos G, Ehrlich PR, Barnoksy AD, Garcia A, Pringle R, Palmer T (2015) Accelerated modern human-induced species losses: Entering the sixth mass extinction. Science Advances 1.5 e1400253CrossRefPubMedPubMedCentralGoogle Scholar
  19. Cheng TL, Rovito SM, Wake DB, Vredenburg VT (2011) Coincident mass extirpation of neotropical amphibians with the emergence of the infectious fungal pathogen Batrachochytrium dendrobatidis. Proceedings of the National Academy of Sciences 108:9502-950; doi: 10.1073/pnas.1105538108 CrossRefGoogle Scholar
  20. Courtois EA, Loyau A, Bourgoin M, Schmeller DS (2016) Initiation of Batrachochytrium dendrobatidis infection in the absence of physical contact with infected hosts - a field study in a high altitude lake. Oikos; doi: 10.1111/oik.03462 Google Scholar
  21. Cox-Foster D L, Conlan, S, Holmes EC, Palacios G, Evans,JD, Moran N.A,… Lipkin WI (2007) A metagenomic survey of microbes in honey bee colony collapse disorder. Science, 318(5848), 283-287CrossRefPubMedGoogle Scholar
  22. Crawford AJ, Lips KR, Bermingham E (2010) Epidemic disease decimates amphibian abundance, species diversity, and evolutionary history in the highlands of central Panama. Proceedings of the National Academy of Sciences 107:13777-13782CrossRefGoogle Scholar
  23. Cunningham AA, Beckmann K, Perkins M, Fitzpatrick L, Cromie R, Redbond J, …Fisher MC (2015) Emerging disease in UK amphibians. Veterinary Record 176:468CrossRefGoogle Scholar
  24. Daszak P, Berger L, Cunningham AA, Hyatt AD, Green DE, Speare R (1999) Emerging infectious diseases and amphibian population declines. Emerging Infectious Diseases 5:735–748CrossRefPubMedPubMedCentralGoogle Scholar
  25. Daszak P, Cunningham AA, Hyatt AD (2000) Emerging infectious diseases of wildlife–threats to biodiversity and human health. Science 287:443-449; doi: 10.1126/science.287.5452.443 CrossRefPubMedGoogle Scholar
  26. Daszak P, Cunningham AA, Hyatt AD (2001 Anthropogenic environmental change and the emergence of infectious diseases in wildlife. Acta Tropica 78:103–16CrossRefPubMedGoogle Scholar
  27. Defenders of Wildlife (2009) Petition: To list all live amphibians in trade as injurious unless free of Batrachochytrium dendrobatidis. Regulatory Brief September 2009. https://www.fws.gov/injuriouswildlife/pdf_files/Petition_Salazar_Bd_amphibian.pdf
  28. Fèvre EM, Bronsvoor BMDC, Hamilton KA, Cleaveland S. (2006). Animal movements and the spread of infectious diseases. Trends in Microbiology 14(3), 125-131CrossRefPubMedGoogle Scholar
  29. Fisher MC, Garner T (2007) The relationship between the emergence of Batrachochytrium dendrobatidis, the international trade in amphibians and introduced amphibian species. Fungal Biology Reviews 21:2–9CrossRefGoogle Scholar
  30. Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr SJ (2012) Emerging fungal threats to animal, plant and ecosystem health. Nature 484(7393):186–194. doi: 10.1038/nature10947 CrossRefPubMedGoogle Scholar
  31. Garmyn A, Van Rooij P, Pasmans F, Hellebuyck T, Van den Broeck W, Haesebrouck F, Martel A (2012) Waterfowl: Potential environmental reservoirs of the chytrid fungus Batrachochytrium dendrobatidis. PLoS One 7:1–5; doi: 10.1371/journal.pone.0035038 Google Scholar
  32. Garner TWJ, Perkins MW, Govindarajulu P, Seglie D, Walker S, Cunningham AA, Fisher MC (2006) The emerging amphibian pathogen Batrachochytrium dendrobatidis globally infects introduced populations of the North American bullfrog, Rana catesbeiana. Biology Letters 2:455–459; doi: 10.1098/rsbl.2006.0494 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Gibbon WJ, Scott DE, Ryan TJ, Buhlmann KA, Tuberville TD, Metts BS, et al. (2000) The global decline of reptiles, déjà vu amphibians. BioScience 50(8): 653-666CrossRefGoogle Scholar
  34. Grant EHC, Muths EL, Katz RA, Canessa S, Adams MJ, Ballard JR, …White CL (2016) Salamander chytrid fungus (Batrachochytrium salamandrivorans) in the United States—Developing research, monitoring, and management strategies. United States Geological Survey Open-File Report 2015-1233. doi: 10.3133/ofr20151233 Google Scholar
  35. Grant EHC, Muths E, Katz RA, Canessa S, Adams MJ, Ballard JR, Berger L, Briggs CJ, Coleman JT, Gray MJ, Harris MC (2017) Using decision analysis to support proactive management of emerging infectious wildlife diseases. Frontiers in Ecology and the Environment 15(4):214-221CrossRefGoogle Scholar
  36. Gray MJ, Lewis JP, Nanjappa P, Klocke B, Pasmans F, Martel A,…Olson DH (2015) Batrachochytrium salamandrivorans: The North American Response and a Call for Action. PLoS Pathogens 11:1–9; doi: 10.1371/journal.ppat.1005251 CrossRefGoogle Scholar
  37. Hagman M, Alford R (2015) Patterns of Batrachochytrium dendrobatidis transmission between tadpoles in a high-elevation rainforest stream in tropical Australia. Diseases of Aquatic Organisms 115:213–221; doi: 10.3354/dao02898 CrossRefPubMedGoogle Scholar
  38. Hanselmann R, Rodríguez A, Lampo M, Fajardo-Ramos L, Alonso Aguirre A, Marm Kilpatrick A, Daszak P (2004) Presence of an emerging pathogen of amphibians in introduced bullfrogs Rana catesbeiana in Venezuela. Biological Conservation 120:115–119. doi: 10.1016/j.biocon.2004.02.013 CrossRefGoogle Scholar
  39. Hecnar SJ, Closkey RT (1996) Regional dynamics and the status of amphibians. Ecology 77(7): 2091-097. doi: 10.2307/2265703 CrossRefGoogle Scholar
  40. IUCN (2016) The IUCN red list of threatened species. World Conservation Union. Available at: www.iucnredlist.org
  41. Iwanowicz DD, Schill WB, Olson DH, Adams MJ, Densmore C, Conman RS, Adams C, Figiel JC, Anderson CW, Blaustein AR, Chestnut T (2017) Potential concerns with analytical methods used for detection of Batrachochytrium salamandrivorans from archived DNA of amphibian swab samples, Oregon, USA. Herpetological Review 48(2):352-355Google Scholar
  42. Johnson ML, Speare R (2003) Survival of Batrachochytrium dendrobatidis in water: quarantine and disease control implications. Emerging Infectious Diseases 9:922–925; doi: 10.3201/eid0908.030145 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Johnson M, Speare R (2005) Possible modes of dissemination of the amphibian chytrid Batrachochytrium dendrobatidis in the environment. Diseases of Aquatic Organisms 65:181–18. doi: 10.3354/dao065181 CrossRefPubMedGoogle Scholar
  44. Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, Daszak P (2008) Global trends in emerging infectious diseases. Nature 451;990-993CrossRefPubMedGoogle Scholar
  45. Karesh WB, Cook RA, Bennett EL, Newcomb J (2005) Wildlife trade and global disease emergence. Emerging Infectious Diseases 11:1000–1002; doi: 10.3201/eid1107.050194 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Kilburn V, Ibáñez R, Green D (2011) Reptiles as potential vectors and hosts of the amphibian pathogen Batrachochytrium dendrobatidis in Panama. Diseases of Aquatic Organisms 97:127–134; doi: 10.3354/dao02409 CrossRefPubMedGoogle Scholar
  47. Kinney VC, Heemeyer JL, Pessier AP, Lannoo MJ (2011) Seasonal pattern of Batrachochytrium dendrobatidis infection and mortality in Lithobates areolatus: Affirmation of Vredenburg’s “10,000 Zoospore Rule”. PLoS One 6(3):e16708CrossRefPubMedPubMedCentralGoogle Scholar
  48. Kolby JE, Ramirez, SD, Berger, L, Griffin, DW, Jocque, M, Skerratt, LF (2015a) Presence of amphibian chytrid fungus (Batrachochytrium dendrobatidies) in rainwater suggests aerial dispersal is possible. Aerobiologia, 31(3): 411-419.doi: 10.1007/s10453-015-9374-6 CrossRefGoogle Scholar
  49. Kolby JE, Ramirez SD, Berger L, Richards-Hrdlicka KL, Jocque M, Skerratt LF (2015) Terrestrial dispersal and potential environmental transmission of the amphibian chytrid fungus (Batrachochytrium dendrobatidis). PLoS One 10:1–13. doi: 10.1371/journal.pone.0125386 Google Scholar
  50. Kolby JE, Daszak P (2016) The emerging amphibian fungal disease, chytridiomycosis: A key example of the global phenomenon of wildlife emerging infectious diseases. Microbiology Spectrum 4(3):385–407Google Scholar
  51. Lambert MRK (1997) Environmental effects of heavy spillage from a destroyed pesticide store near Hargeisa (Somaliland) assessed during the dry season, using reptiles and amphibians as bioindicators. Archives of Environmental Contamination and Toxicology 32:80-93; doi: 10.1007/s002449900158 CrossRefPubMedGoogle Scholar
  52. Laking AE, Ngo HN, Pasmans F, Martel A, Nguyen TT (2017) Batrachochytrium salamandrivorans is the predominant chytrid fungus in Vietnamese salamanders. Scientific Reports 7; doi: 10.1038/srep44443 PubMedPubMedCentralGoogle Scholar
  53. Langwig KE, Voyles J, Wilber MQ, Frick WF, Murray KA, Bolker BM…Kilpatcik AM (2015) Context-dependent conservation responses to emerging wildlife diseases. Frontiers in Ecology and the Environment 13:195–202; doi: 10.1890/140241 CrossRefGoogle Scholar
  54. Lips, KR (1998) Decline of a tropical montane amphibian fauna. Conservation Biology 12:1-13; doi: 10.1111/j.1523-1739.1998.96359.x CrossRefGoogle Scholar
  55. Lips KR, Brem F, Brenes R, Reeve JD, Alford RA, Voyles J,… Collins JP (2006) Emerging infectious disease and the loss of biodiversity in a Neotropical amphibian community. Proceedings of the National Academy of Science 103:3165-3170; doi: 10.1073/pnas.0506889103 CrossRefGoogle Scholar
  56. Liu X, Rohr JR, Li Y (2013) Climate, vegetation, introduced hosts and trade shape a global wildlife pandemic. Proceedings of the Royal Society of London B: Biological Sciences 280:20122506. doi: 10.1098/rspb.2012.2506 CrossRefGoogle Scholar
  57. Longcore JE, Pessier AP, Nichols DK (1999) Batrachochytrium dendrobatidis gen. et sp. nov., a chytrid pathogenic to amphibians. Mycologia 91:219–227; doi: 10.2307/3761366 CrossRefGoogle Scholar
  58. Martel A, Spitzen-van der Sluijs A, Blooi M, Bert W, Ducatelle R, Fisher MC, Pasmans F (2013) Batrachochytrium salamandrivorans sp. nov. causes lethal chytridiomycosis in amphibians. Proceedings of the National Academy of Sciences 110:15325–9. doi: 10.1073/pnas.1307356110 CrossRefGoogle Scholar
  59. Martel A, Blooi M, Adriaensen C, Van Rooij P, Beukema W, Fisher MC, Farrer RA…Tobler U, (2014) Recent introduction of a chytrid fungus endangers Western Palearctic salamanders. Science 346:630–631; doi: 10.1126/science.1258268 CrossRefPubMedGoogle Scholar
  60. McDonald KR, Mendez D, Muller R, Freeman AB, Speare R (2005) Decline in the prevalence of chytridiomycosis in frog populations in north Queensland, Australia. Pacific Conservation Biology. doi: 10.1071/PC050114 Google Scholar
  61. McMahon TA, Brannelly LA, Chatfield MWH, Johnson PTJ, Joseph MB, McKenzie VJ, ….Rohr JR (2013) Chytrid fungus Batrachochytrium dendrobatidis has nonamphibian hosts and releases chemicals that cause pathology in the absence of infection. Proceedings of the National Academy of Sciences 110:210–215; doi: 10.1073/pnas.1200592110 CrossRefGoogle Scholar
  62. Muletz C, Caruso NM, Fleischer RC, McDiarmid RW, Lips KR (2014) Unexpected rarity of the pathogen Batrachochytrium dendrobatidis in Appalachian Plethodon salamanders: 1957–2011. PLoS One 9:e103728. doi: 10.1371/journal.pone.0103728 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Murray KA, Skerratt LF, Speare R, McCallum H (2009) Impact and dynamics of disease in species threatened by the amphibian chytrid fungus, Batrachochytrium dendrobatidis. Conservation Biology 23:1242–1252. doi: 10.1111/j.1523-1739.2009.01211.x CrossRefPubMedGoogle Scholar
  64. Murray KA, Retallick RWR, Puschendorf R, Skerratt LF, Rosauer D, McCallum H, ….VanDerWal J (2011) Assessing spatial patterns of disease risk to biodiversity: implications for the management of the amphibian pathogen, Batrachochytrium dendrobatidis. Journal of Applied Ecology 48:163-173; doi: 10.1111/j.1365-2664.2010.01890.x CrossRefGoogle Scholar
  65. Murray KA, Rosauer D, McCallum H, Skerratt L (2010) Integrating species traits with extrinsic threats: closing the gap between predicting and preventing species declines. Proceedings of the Royal Society of London B: Biological Sciences. doi: 10.1098/rspb.2010.1872
  66. Murray KA, Skerratt LF, Garland S, Kriticos D, McCallum H (2013) Whether the weather drives patterns of endemic amphibian chytridiomycosis: a pathogen proliferation approach. PLoS One 8:e61061. doi: 10.1371/journal.pone.0061061 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Natuurpunt (2016) Save our salamanders. [Web Application]. https://www.natuurpunt.be/salamanders-and-batrachochytrium-salamandrivorans
  68. Olson DH, Aanensen DM, Ronnenberg KL, Powell CI, Walker SF, Bielby J, Fisher MC (2013) Mapping the global emergence of Batrachochytrium dendrobatidis, the amphibian chytrid fungus. PLoS One 8:e56802. doi: 10.1371/journal.pone.0056802 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Parrott JC, Shepack A, Burkart D, LaBumbard B, Scime P, Baruch E, Catenazzi A (2016) Survey of pathogenic chytrid fungi (Batrachochytrium dendrobatidis and B. salamandrivorans) in salamanders from three mountain ranges in Europe and the Americas. EcoHealth; doi: 10.1007/s10393-016-1188-7 PubMedGoogle Scholar
  70. Phillott AD, Grogan LF, Cashins SD, McDonald KR, Berger L, Skerratt LF (2013) Chytridiomycosis and seasonal mortality of tropical stream-associated frogs 15 years after introduction of Batrachochytrium dendrobatidis. Conservation Biology 27:1058–1068. doi: 10.1111/cobi.12073 CrossRefPubMedGoogle Scholar
  71. Piotrowski JS, Annis SL, Longcore JE (2004) Physiology of Batrachochytrium dendrobatidis, a chytrid pathogen of amphibians. Mycologia 96:9–15CrossRefPubMedGoogle Scholar
  72. Richgels KLD, Russell RE, Adams MJ, White CL, Grant EHC (2016) Spatial variation in risk and consequence of Batrachochytrium salamadrivorans introduction in the USA. Royal Society Open Science; doi: 10.1098/150616 PubMedPubMedCentralGoogle Scholar
  73. Rachowicz LJ, Knapp RA, Morgan JA, Stice MJ, Vredenburg VT, Parker JM, Briggs CJ (2006) Emerging infectious disease as a proximate cause of amphibian mass mortality. Ecology 87(7):1671–1683; doi: 10.1890/0012-9658(2006)87[1671:EIDAAP]2.0.CO;2 CrossRefPubMedGoogle Scholar
  74. Reeder, NMM, Pessier AP, & Vredenburg VT (2012) A reservoir species for the emerging amphibian pathogen Batrachochytrium dendrobatidis thrives in a landscape decimated by disease. PLoS One 7(3), e33567CrossRefPubMedPubMedCentralGoogle Scholar
  75. Rowland FE, Rawlings MB, Semlitsch RD (2017) Joint effects of resources and amphibians on pond ecosystems. Oecologia 183:237. doi: 10.1007/s00442-016-3748-5 CrossRefPubMedGoogle Scholar
  76. Rowley JJL, Alford RA, Skerratt LF (2006) The amphibian chytrid Batrachochytrium dendrobatidis occurs on freshwater shrimp in rain forest streams in Northern Queensland, Australia. EcoHealth 3:49–52; doi: 10.1007/s10393-005-0005-5 CrossRefGoogle Scholar
  77. Sabino-Pinto J, Bletz M, Hendrix R, Bina Perl RG, Martel A, Pasmans F, et al (2015) First detection of the emerging fungal pathogen Batrachochytrium salamandrivoransin Germany. Amphibia-Reptilia 36:411–416. doi: 10.1163/15685381-00003008 CrossRefGoogle Scholar
  78. Schloegel LM, Picco AM, Kilpatrick AM, Davies AJ, Hyatt AD, Daszak P (2009) Magnitude of the US trade in amphibians and presence of Batrachochytrium dendrobatidis and ranavirus infection in imported North American bullfrogs (Rana catesbeiana). Biological Conservation 142(7):1420-1426 doi:  10.1016/j.biocon.2009.02.007 CrossRefGoogle Scholar
  79. Schloegel LM, Toledo LF, Longcore JE, Greenspan SE, Vieira CA, et al (2012) Novel, panzootic and hybrid genotypes of amphibian chytridiomycosis associated with the bullfrog trade. Molecular Ecology 21:5162–5177. doi: 10.1111/j.1365-294X.2012.05710.x CrossRefPubMedGoogle Scholar
  80. Schmidt B (2016) Import ban for salamanders and newts in Switzerland. Why? (Importverbot für Salamander und Molche in die Schweiz: Warum?.). Reptilien Un Amphibien in Gefahr 57:8–9Google Scholar
  81. Schmidt BR, Bozzuto C, Lötters S, Steinfartz S (2017) Dynamics of host populations affected by the emerging fungal pathogen Batrachochytrium salamandrivorans. Royal Society Open Science 4(3):160801. doi: 10.1098/rsos.160801 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Semlitsch RD, O’Donnell KM, Thompson III FR (2014) Abundance, biomass production, nutrient content, and the possible role of terrestrial salamanders in Missouri Ozark forest ecosystems. Canadian Journal of Zoology 92(12):997-1004CrossRefGoogle Scholar
  83. Sette CM, Vredenburg VT, Zink AG (2015) Reconstructing historical and contemporary disease dynamics: A case study using the California slender salamander. Biological Conservation 192:20-9. doi: 10.1016/j.biocon.2015.08.039 CrossRefGoogle Scholar
  84. Skerratt LF, Berger L, Speare R, Cashins S, McDonald KR, Phillott AD,…Kenyon N (2007) Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. EcoHealth 4:125–134; doi: 10.1007/s10393-007-0093-5 CrossRefGoogle Scholar
  85. Smith KF, Sax DF, Lafferty KD (2006) Evidence for the role of infectious disease in species extinction and endangerment. Conservation Biology 20:1349-1357; doi: 10.1111/j.1523-1739.2006.00524.x CrossRefPubMedGoogle Scholar
  86. Spitzen-van der Sluijs A, Martel A, Asselberghs J, Bales EK, Beukema W, Bletz MC,… Lötters S (2016) Expanding distribution of lethal amphibian fungus Batrachochytrium salamandrivorans in Europe. Emerging Infectious Diseases 22:1286–1288; doi: 10.3201/eid2207.160109 CrossRefPubMedPubMedCentralGoogle Scholar
  87. Standing Committee to the Convention on the Conservation of European Wildlife and Natural Habitats (2015) Convention on the conservation of European wildlife and natural habitats—35th meeting of the Standing Committee—Strasbourg, 1 December–4 December 2015—Recommendation no. 176 (2015) on the prevention and control of the Batrachochytrium salamandrivorans Google Scholar
  88. Stegen G, Pasmans F, Schmidt BR, Rouffaer LO, Van Praet S, … Martel A (2017) Drivers of salamander extirpation mediated by Batrachochytrium salamandrivorans. Nature; doi: 10.1038/nature22059 PubMedCentralGoogle Scholar
  89. Stephen C, Forzán MJ, Redford T, Zimmer M (2015) Batrachochytrium salamandrivorans—a threat assessment of salamander chytrid disease. Canadian Wildlife Health Cooperative http://www.cwhcrcsf.ca/docs/technical_reports/Salamander_Chytrid_Threat_Assessment.pdf
  90. Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ASL, Fischman DL, Waller RW (2004) Status and trends of amphibian declines and extinctions worldwide. Science; doi: 10.1126/science.1103538 PubMedGoogle Scholar
  91. Tompkins DM, Carver S, Jones ME, Krkošek M, Skerratt LF (2015) Emerging infectious diseases of wildlife: a critical perspective. Trends in Parasitology 31; 49-159CrossRefGoogle Scholar
  92. United States Fish and Wildlife Service (2016) Injurious wildlife species: Listing salamanders due to risk of salamander chytrid fungus. Federal Register 81;1534–1556Google Scholar
  93. vanEngelsdorp E, Evans JD, Saegerman C, Mullin C, Haubruge E, Nguyen BK, … Pettis JS (2009) Colony collapse disorder: a descriptive study. PloS One, 4(8), e6481CrossRefPubMedPubMedCentralGoogle Scholar
  94. Van Rooij P, Martel A, Haesebrouck F, Pasmans F (2015) Amphibian chytridiomycosis: A review with focus on fungus-host interactions. Veterinary Research 46:1–22. doi: 10.1186/s13567-015-0266-0 CrossRefGoogle Scholar
  95. Vredenburg VT, Knapp RA, Tunstall TS, & Briggs CJ (2010) Dynamics of an emerging disease drive large-scale amphibian population extinctions. Proceedings of the National Academy of Sciences 107:9689-9694CrossRefGoogle Scholar
  96. Voyles J, Johnson LR, Briggs CJ, Cashins SD, Alford RA, Berger L, Skerratt LF, Speare R, Rosenblum EB (2012). Temperature alters reproductive life history patterns in Batrachochytrium dendrobatidis, a lethal pathogen associated with the global loss of amphibians. Ecology and Evolution 2(9):2241-2249CrossRefPubMedPubMedCentralGoogle Scholar
  97. Voyles J, Kilpatrick AM, Collins JP, Fisher MC, Frick, WF, McCallum H,… Briggs CJ (2014) Moving beyond too little, too late: managing emerging infectious diseases in wild populations requires international policy and partnerships. EcoHealth 12(3):404CrossRefPubMedGoogle Scholar
  98. Wake DB, Vredenburg VT (2008) Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proceedings of the National Academy of Sciences 105:11466–11473; doi: 10.1073/pnas.0801921105 CrossRefGoogle Scholar
  99. Weldon C, du Preez LH, Hyatt AD, Muller R, Speare R (2004) Origin of the amphibian chytrid fungus. Emerging Infectious Diseases 10(12): 2100-2105. doi: 10.3201/eid1012.030804 CrossRefPubMedPubMedCentralGoogle Scholar
  100. Welsh HH, Ollivier LM (1998) Stream amphibians as indicators of ecosystem stress: A case study from California’s redwoods. Ecological Applications 8:1118-1132; doi: 10.2307/2640966 Google Scholar
  101. White CL, Forzan MJ, Pessier AP, Allender MC, Ballard JR, Catenazzi A … Kerby JL (2016) Amphibian: a case definition and diagnostic criteria for Batrachochytrium salamandrivorans chytridiomycosis. Herpetological Review 47:207–209Google Scholar
  102. Woodhams DC, Alford RA, Briggs CJ, Johnson M, Rollins-Smith LA (2008) Life-history trade-offs influence disease in changing climates: strategies of an amphibian pathogen. Ecology 89(6):1627-1639CrossRefPubMedGoogle Scholar
  103. Wyler LS, Sheikh PA (2013) International illegal trade in wildlife: threats and U.S. policy. Library of Congress Washington DC Congressional Research ServiceGoogle Scholar
  104. Yap TA, Koo MS, Ambrose RF, Wake DB, Vredenburg VT (2015) Averting a North American biodiversity crisis. Science 349:481–482; doi: 10.1126/science.aab1052 CrossRefPubMedGoogle Scholar

Copyright information

© EcoHealth Alliance 2017

Authors and Affiliations

  • Tiffany A. Yap
    • 1
    • 2
  • Natalie T. Nguyen
    • 3
  • Megan Serr
    • 4
  • Alexander Shepack
    • 5
  • Vance T. Vredenburg
    • 1
    • 2
  1. 1.Department of BiologySan Francisco State UniversitySan FranciscoUSA
  2. 2.Museum of Vertebrate Zoology, University of California BerkeleyBerkeleyUSA
  3. 3.U.S. Geological Survey National Wildlife Health CenterMadisonUSA
  4. 4.Department of Biological SciencesNorth Carolina State UniversityRaleighUSA
  5. 5.Zoology DepartmentSouthern Illinois University CarbondaleCarbondaleUSA

Personalised recommendations