, Volume 13, Issue 4, pp 761–774 | Cite as

Viral Diversity, Prey Preference, and Bartonella Prevalence in Desmodus rotundus in Guatemala

  • Amy K. Wray
  • Kevin J. OlivalEmail author
  • David Morán
  • Maria Renee Lopez
  • Danilo Alvarez
  • Isamara Navarrete-Macias
  • Eliza Liang
  • Nancy B. Simmons
  • W. Ian Lipkin
  • Peter Daszak
  • Simon J. Anthony
Original Contribution


Certain bat species serve as natural reservoirs for pathogens in several key viral families including henipa-, lyssa-, corona-, and filoviruses, which may pose serious threats to human health. The Common Vampire Bat (Desmodus rotundus), due to its abundance, sanguivorous feeding habit involving humans and domestic animals, and highly social behavioral ecology, may have an unusually high potential for interspecies disease transmission. Previous studies have investigated rabies dynamics in D. rotundus, yet the diversity of other viruses, bacteria, and other microbes that these bats may carry remains largely unknown. We screened 396 blood, urine, saliva, and fecal samples from D. rotundus captured in Guatemala for 13 viral families and genera. Positive results were found for rhabdovirus, adenovirus, and herpesvirus assays. We also screened these samples for Bartonella spp. and found that 38% of individuals tested positive. To characterize potential for interspecies transmission associated with feeding behavior, we also analyzed cytochrome B sequences from fecal samples to identify prey species and found that domestic cattle (Bos taurus) made up the majority of blood meals. Our findings suggest that the risk of pathogen spillover from Desmodus rotundus, including between domestic animal species, is possible and warrants further investigation to characterize this microbial diversity and expand our understanding of foraging ecology in their populations.


bats Chiroptera Bartonella pathogen discovery disease ecology feeding preference adenovirus herpesvirus rhabdovirus viral 



This study was funded by the National Institute of Allergy and Infectious Diseases (NIAID) Non-Biodefense Emerging Infectious Disease Research Opportunities (Award R01 AI079231) and received additional support from the PREDICT project of the United States Agency for International Development (USAID) Emerging Pandemic Threats Program.

Supplementary material

10393_2016_1183_MOESM1_ESM.pdf (87 kb)
Supplementary material 1 (PDF 86 kb)


  1. Annan A, Baldwin HJ, Corman VM, Klose SM, Owusu M, Nkrumah EE, Badu EK, Anti P, Agbenyega O, Meyer B, Oppong S, Sarkodie YA, Kalko EKV, Lina PHC, Godlevska EV, Reusken C, Seebens A, Gloza-Rausch F, Vallo P, Tschapka M, Drosten C, Drexler JF. (2013). Human betacoronavirus 2c EMC/2012–related viruses in bats, Ghana and Europe. Emerging Infectious Diseases, 19(3), 456.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Anthony SJ, Leger JS, Pugliares K, Ip HS, Chan JM, Carpenter ZW, Navarrete-Macias I, Sanchez-Leon M, Saliki JT, Pedersen J, Karesh W, Daszak P, Rabadan R, Rowles T, Lipkin WI (2012). Emergence of fatal avian influenza in New England harbor seals. MBio, 3(4), e00166-12.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Anthony SJ, Ojeda-Flores R, Rico-Chavez O, Navarrete-Macias I, Zambrana-Torrelio CM, Rostal MK, Epstein JH, Tipps T, Liang E, Sanchez-Leon M, Sotomayor-Bonilla J, Aguirre AA, Ávila-Flores R, Medellín RA, Goldstein T, Suzán G, Daszak P, Lipkin WI. (2013a). Coronaviruses in bats from Mexico. Journal of General Virology, 94, 1028-1038.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Anthony SJ, Epstein JH, Murray KA, Navarrete-Macias I, Zambrana-Torrelio CM, Solovyov A, Ojeda-Flores R, Arrigo NC, Islam A, Khan SA, Hosseini P, Bogich TL, Olival KJ, Sanchez-Leona MD, Karesh WB, Goldstein T, Luby SP, Morse SS, Mazet JAK, Daszak P, Lipkin WI. (2013b). A strategy to estimate unknown viral diversity in mammals. MBio 4(5), e00598-13.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Anthony SJ, Islam A, Johnson C, Navarrete-Macias I, Liang E, Jain K, Hitchens PL, Che X, Soloyvov A, Hicks AL, Ojeda-Flores R (2015) Non-random patterns in viral diversity. Nature Communications 6:8147Google Scholar
  6. Arellano-Sota C. (1988). Biology, ecology, and control of the vampire bat. Review of Infectious Diseases10 (Supplement 4), S615-S619.CrossRefGoogle Scholar
  7. Bahlman JW, Kelt DA. (2007). Use of Olfaction During Prey Location by the Common Vampire Bat (Desmodus rotundus) 1. Biotropica39(1), 147-149.CrossRefGoogle Scholar
  8. Bai Y, Kosoy M, Recuenco S, Alvarez D, Moran D, Turmelle A, Ellison J, Garcia DL, Rupprecht C. (2011). Bartonella spp. in bats, Guatemala. Emerging Infectious Diseases, 17(7), 1269.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bai Y, Malania L, Castillo DA, Moran D, Boonmar S, Chanlun A, Suksawat F, Maruyama S, Knobel D, Kosoy M. (2013). Global distribution of Bartonella infections in domestic bovine and characterization of Bartonella bovis strains using multi-locus sequence typing. PLoS One, 8(11), e80894.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bobrowiec PED, Lemes MR, Gribel R. (2015). Prey preference of the common vampire bat (Desmodus rotundus, Chiroptera) using molecular analysis. Journal of Mammalogy, 96(1), 54-63.Google Scholar
  11. Bourhy H, Cowley JA, Larrous F, Holmes EC, Walker PJ. (2005). Phylogenetic relationships among rhabdoviruses inferred using the L polymerase gene. The Journal of General Virology, 86(Pt 10), 2849–58.CrossRefPubMedGoogle Scholar
  12. Brandão PE, Scheffer K, Villarreal LY, Achkar S, Oliveira RDN, Fahl WDO, Castilho JG, Kotait I, Richtzenhain LJ. (2008). A coronavirus detected in the vampire bat Desmodus rotundus. Brazilian Journal of Infectious Diseases, 12(6), 466-468.CrossRefPubMedGoogle Scholar
  13. Carter GG, Coen CE, Stenzler LM, Lovette IJ. (2006). Avian host DNA isolated from the feces of white-winged vampire bats (Diaemus youngi). Acta Chiropterologica8(1), 255-258.CrossRefGoogle Scholar
  14. Carter GG, Wilkinson GS. (2013). Food sharing in vampire bats: reciprocal help predicts donations more than relatedness or harassment. Proceedings of the Royal Society B: Biological Sciences280(1753), 20122573.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chua KB, Bellini WJ, Rota PA, Harcourt BH, Tamin A, Lam SK, Ksiazek TG, Rollin PE, Zaki SR, Sheih WJ, Gouldsmith CS, Gubler DJ, Roehrig JT, Eaton B, Gould AR, Olson J, Field H, Daniels P, Ling AE, Peters CJ, Anderson LJ, Mahy BWJ. (2000). Nipah Virus: A recently emergent deadly Paramyxovirus. Science, (288) 1432-1435.CrossRefPubMedGoogle Scholar
  16. Da Rosa ES, Kotait I, Barbosa TF, Carrieri ML, Brandão PE, Pinheiro AS, Begot AL, Wada MY, Rosely de Oliveira C, Grisard EC, Ferreira M, da Silva Lima RJ, Montebello L, Medeiros DBA, Sousa RCM, Bensabath G, Carmo EH, Vasconcelos PF. (2006). Bat-transmitted human rabies outbreaks, Brazilian Amazon. Emerging Infectious Diseases, 12(8), 1197.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Favoretto SR, de Mattos CC, de Mattos CA, Campos ACA, Sacramento DRV, Durigon EL. (2013). The emergence of wildlife species as a source of human rabies infection in Brazil. Epidemiology and Infection141(07), 1552-1561.CrossRefPubMedGoogle Scholar
  18. Drexler JF, Corman VM, Wegner T, Tateno AF, Zerbinati RM, Gloza-Rausch F, Seebens A, Müller AM, Drosten C. (2011). Amplification of emerging viruses in a bat colony. Emerging Infectious Diseases17(3), 449.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Ellison JA, Gilbert AT, Recuenco S, Moran D, Alvarez DA, Kuzmina N, Garcia DL, Peruski LF, Mendonça MT, Lindblade KA, Rupprecht CE. (2014). Bat rabies in Guatemala. PLoS Neglected Tropical Diseases8(7), e3070.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Fèvre EM, Bronsvoort BM, Hamilton KA, Cleaveland S. (2006). Animal movements and the spread of infectious diseases. Trends in Microbiology14(3), 125-131CrossRefPubMedGoogle Scholar
  21. Field H, Young P, Yob JM, Mills J, Hall L, Mackenzie J. (2001). The natural history of Hendra and Nipah viruses. Microbes and Infection, 3(4), 307-314.CrossRefPubMedGoogle Scholar
  22. Greenhall AM. (1972). The biting and feeding habits of the Vampire bat, Desmodus rotundus*. Journal of Zoology168(4), 451-461.CrossRefGoogle Scholar
  23. Greenhall AM, Schutt WA (1996) Diaemus youngi. Mammalian Species 533:1–7.Google Scholar
  24. Greenhall AM, Schmidt U, Lopez-Forment W (1971) Attacking behavior of the vampire bat, Desmodus rotundus, under field conditions in Mexico. Biotropica 3:136–141Google Scholar
  25. Guo WP, Lin XD, Wang W, Tian JH, Cong ML, Zhang HL, Wang MR, Zhou RH, Wang JB, Li MH, Xu J, Holmes EC, Zhang YZ. (2013). Phylogeny and origins of hantaviruses harbored by bats, insectivores, and rodents. PLoS Pathogens 9(2):e1003159.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Halpin K, Young PL, Field HE, Mackenzie JS. Isolation of Hendra virus from pteropid bats: a natural reservoir of Hendra virus. Journal of General Virology, 81, 1927-1932 (2000).CrossRefPubMedGoogle Scholar
  27. Harrach B. (2000). Reptile adenoviruses in cattle. Acta Veterinaria Hungarica, 48, 485-490.CrossRefPubMedGoogle Scholar
  28. Hoyt RA, Altenbach JS (1981) Observations on Diphylla ecaudata in captivity. Journal of Mammalogy 62:215–216Google Scholar
  29. Ithete NL, Stoffberg S, Corman VM, Cottontail VM, Richards LR, Schoeman MC, Drosten C, Drexler JF, Preiser W. (2013). Close relative of human Middle East respiratory syndrome coronavirus in bat, South Africa. Emerging Infectious Diseases19(10), 1697.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Jánoska M, Vidovszky M, Molnár V, Liptovszky M, Harrach B, Benkő M. (2011). Novel adenoviruses and herpesviruses detected in bats. The Veterinary Journal189(1), 118-121.CrossRefPubMedGoogle Scholar
  31. Johnson G, Ayers M, McClure SCC, Richardson SE, Tellier R. (2003). Detection and identification of Bartonella species pathogenic for humans by PCR amplification targeting the riboflavin synthase gene (ribC). Journal of Clinical Microbiology, 41(3), 1069-1072.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Johnson N, Aréchiga-Ceballos N, Aguilar-Setien A. (2014). Vampire bat rabies: ecology, epidemiology, and control. Viruses, 6(5), 1911-1928.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kapoor A, Simmonds P, Scheel TK, Hjelle B, Cullen JM, Burbelo PD, Chauhana LV, Duraisamya R, Sanchez-Leona M, Jaina K, Vandegrifth KJ, Calishera CH, Ricec CM, Lipkin WI. (2013). Identification of rodent homologs of hepatitis C virus and pegiviruses. MBio, 4(2), e00216-13.CrossRefPubMedPubMedCentralGoogle Scholar
  34. King AM, Adams MJ, Lefkowitz EJ (editors) (2012) Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses (Vol. 9). Elsevier.Google Scholar
  35. Klempa B, Fichet-Calvet E, Lecompte E, Auste B, Aniskin V, Meisel H, Denys C, Koivogui L, ter Meulen J, Krüger DH. (2006). Hantavirus in African wood mouse, Guinea. Emerging Infectious Diseases, 12(5), 838.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Kunz T H, Parsons S. (Eds.). (1988). Ecological and behavioral methods for the study of bats (pp. 1-29). Washington: Smithsonian Institution Press.Google Scholar
  37. Kuzmin IV, Hughes GJ, Rupprecht CE. (2006). Phylogenetic relationships of seven previously unclassified viruses within the family Rhabdoviridae using partial nucleoprotein gene sequences. The Journal of General Virology, 87(Pt 8), 2323–31.CrossRefPubMedGoogle Scholar
  38. Lee DN, Papeş M, Van Den Bussche RA. (2012). Present and potential future distribution of common vampire bats in the Americas and the associated risk to cattle. PLoS One, 7(8), e42466.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Leroy EM, Kumulungui B, Pourrut X, Rouquet P, Hassanin A, Yaba P, Delicat A, Paweska JT, Gonzalez JP, Swanepoel R. (2005). Fruit bats as reservoirs of Ebola virus. Nature 438, 575-576.CrossRefPubMedGoogle Scholar
  40. Li W, Shi Z, Yu M, Ren W, Smith C, Epstein JH, Wang H, Crameri G, Hu Z, Zhang H, Zhang J, McEachern J, Field H, Daszak P, Eaton BT, Zhang S, Wang LF. (2005). Bats are natural reservoirs of SARS-like coronaviruses. Science, 310(5748), 676-679.CrossRefPubMedGoogle Scholar
  41. Li Y, Ge X, Zhang H, Zhou P, Zhu Y, Zhang Y, Yuan J, Wang LF, Shi Z. (2010). Host range, prevalence, and genetic diversity of adenoviruses in bats. Journal of Virology84(8), 3889-3897.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Lima FE, Cibulski SP, Elesbao F, Junior PC, Batista HB, Roehe PM, Franco AC. (2013). First detection of adenovirus in the vampire bat (Desmodus rotundus) in Brazil. Virus Genes, 47(2), 378-381.CrossRefPubMedGoogle Scholar
  43. Maeda K, Hondo E, Terakawa J, Kiso Y, Nakaichi N, Endoh D, Sakai K, Morikawa S, Mizutani T. (2008). Isolation of novel adenovirus from fruit bat (Pteropus dasymallus yayeyamae). Emerging Infectious Diseases14(2), 347.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Mayen F. (2003). Haematophagous bats in Brazil, their role in rabies transmission, impact on public health, livestock industry and alternatives to an indiscriminate reduction of bat population. Journal of Veterinary Medicine, Series B50(10), 469-472.CrossRefGoogle Scholar
  45. Mead DG, Gray EW, Noblet R, Murphy MD, Howerth EW, Stallknecht DE. (2004). Biological transmission of vesicular stomatitis virus (New Jersey serotype) by Simulium vittatum (Diptera: Simuliidae) to domestic swine (Sus scrofa). Journal of Medical Entomology, 41(1), 78-82.CrossRefPubMedGoogle Scholar
  46. McCarthy TJ, Davis WB, Hill JE, Jones JK, Cruz GA. (1993). Bat Mammalia: (Chiroptera) records, early collectors, and faunal lists for Northern Central America. Annals of Carnegie Museum 62: 191–228.Google Scholar
  47. Memish ZA, Mishra N, Olival, KJ, Fagbo SF, Kapoor V, Epstein JH, AlHakeem R, Durosinloun A, Al Asmari M, Islam A, Kapoor A, Briese T, Daszak P, Al Rabeeah AA, Lipkin WI (2013) Middle East respiratory syndrome coronavirus in bats, Saudi Arabia. Emerging Infectious Diseases 19(11):1819–1823.Google Scholar
  48. Moran D, Juliao P, Alvarez D, Lindblade KA, Ellison JA, Gilbert AT, Petersen B, Rupprecht C, Recuenco, S. (2015). Knowledge, attitudes and practices regarding rabies and exposure to bats in two rural communities in Guatemala. BMC Research Notes8(1), 955.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Moureau G, Temmam S, Gonzalez JP, Charrel RN, Grard G, De Lamballerie X. (2007). A real-time RT-PCR method for the universal detection and identification of flaviviruses. Vector-Borne and Zoonotic Diseases 7(4):467–478CrossRefPubMedGoogle Scholar
  50. Morse SF, Olival KJ, Kosoy M, Billeter S, Patterson BD, Dick CW, Dittmar K. (2012). Global distribution and genetic diversity of Bartonella in bat flies (Hippoboscoidea, Streblidae, Nycteribiidae). Infection, Genetics and Evolution12(8), 1717-1723.CrossRefPubMedGoogle Scholar
  51. Nowak RM (1994) Walker’s Bats of the World. JHU Press.Google Scholar
  52. Olival KJ, Epstein JH, Wang LF, Field HE (2012) Are bats exceptional viral reservoirs. New Directions in Conservation Medicine: Applied Cases of Ecological Health 195–212.Google Scholar
  53. Olival KJ, Dittmar K, Bai Y, Rostal MK, Lei BR, Daszak P, Kosoy M. (2015). Bartonella spp. in a Puerto Rican Bat Community. Journal of Wildlife Diseases, 51(1), 274- 278.CrossRefPubMedGoogle Scholar
  54. Palacios G, Cowled C, Bussetti AV, Savji N, Weir R, Wick I, da Rosa AT, Calisher CH, Tesh RB, Boyle D, Lipkin WI. (2011). Rapid molecular strategy for orbivirus detection and characterization. Journal of Clinical Microbiology, 49(6), 2314-2317.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Penn O, Privman E, Ashkenazy H, Landan G, Graur D, Pupko T. (2010). GUIDANCE: a web server for assessing alignment confidence scores. Nucleic Acids Research38(suppl 2), W23-W28.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Pérez SG, López JE. (2012). Five new records of bats for Guatemala. Chiroptera Neotropical 18: 1106–1110.Google Scholar
  57. Quan PL, Firth C, Street C, Henriquez JA, Petrosov A, Tashmukhamedova A, Hutchison SK, Egholm M, Osinubi MO, Niezgoda M, Ogunkoya AB. (2010). Identification of a severe acute respiratory syndrome coronavirus-like virus in a leaf-nosed bat in Nigeria. MBio, 1(4), e00208-10.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Quan PL, Firth C, Conte JM, Williams SH, Zambrana-Torrelio CM, Anthony SJ, Ellison JA, Gilbert AT, Kuzmin IV, Niezgoda M, Osinubi MOV, Recuenco S, Markotter W, Breiman RF, Kalemba L, Malekani J, Kim A. Lindblade KA, Rostal MK, Ojeda-Flores R, Suzan G, Davis LB, Blau DM, Ogunkoya AB, Castillo DAA, Moran D, Ngam S, Akaibe D, Agwanda B, Briese T, Epstein JH, Daszak P, Rupprecht CE, Holmes EC, Lipkin WI (2013) Bats are a major natural reservoir for hepaciviruses and pegiviruses. Proceedings of the National Academy of Sciences 110(20):8194–8199.Google Scholar
  59. Rahman SA, Hassan SS, Olival KJ, Mohamed M, Chang LY, Hassan L, Saad NM, Shohaimi SA, Mamat ZC, Naim MS, Epstein JH, Suri AS, Field HE, Daszak P. (2010). Characterization of Nipah virus from naturally infected Pteropus vampyrus bats, Malaysia. Emerging Infectious Diseases, 16(12), 1990.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Sánchez-Seco MP, Rosario D, Quiroz E, Guzmán G, Tenorio A. (2001). A generic nested-RT-PCR followed by sequencing for detection and identification of members of the alphavirus genus. Journal of Virological Methods95(1), 153-161.CrossRefPubMedGoogle Scholar
  61. Stallknecht DE, Perzak DE, Bauer LD, Murphy MD, Howerth, E. W. (2001). Contact transmission of vesicular stomatitis virus New Jersey in pigs. American Journal of Veterinary Research, 62(4), 516-520.CrossRefPubMedGoogle Scholar
  62. Sumibcay L, Kadjo B, Gu SH, Kang HJ, Lim BK, Cook JA, Song JW, Yanagihara R. (2012). Divergent lineage of a novel hantavirus in the banana pipistrelle (Neoromicia nanus) in Cote d’Ivoire. Virology Journal9(1), 34.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Swanepoel R, Smit SB, Rollin PE, Formenty P, Leman PA, Kemp A, Burt FJ, Grobbelaar AA, Croft J, Bausch DG, Zeller H, Leirs H, Braack LEO, Libande ML, Zaki S, Nichol ST, Ksiazek TG, Paweska JT. (2007). Studies of reservoir hosts for Marburg virus. Emerging Infectious Diseases, 13(12), 1847.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Tong S, Chern SWW, Li Y, Pallansch MA, Anderson LJ. (2008). Sensitive and broadly reactive reverse transcription-PCR assays to detect novel paramyxoviruses. Journal of Clinical Microbiology46(8), 2652-2658.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Tong S, Li Y, Rivailler P, Conrardy C, Castillo DAA, Chen LM., Recuenco S, Ellison JA, Davis CT, York IA, Turmelle AS, Moran D, Rogers S, Shi M, Tao Y, Weil MR, Tang K, Rowe LA, Sammons S, Xu X, Frace M, Lindblade KA, Cox NJ, Anderson LJ, Rupprecht CE, Donis RO. (2012). A distinct lineage of influenza A virus from bats. Proceedings of the National Academy of Sciences109(11), 4269-4274.CrossRefGoogle Scholar
  66. Tong S, Zhu X, Li Y, Shi M, Zhang J, Bourgeois M, Yang H, Chen X, Recuenco S, Gomez J, Chen LM, Johnson A, Tao Y, Dreyfus C, Yu W, McBride R, Carney PJ, Gilbert AT, Chang J, Guo Z, Davis CT, Paulson JC, Stevens J, Rupprecht CE, Holmes EC, Wilson IA, Donis RO. (2013). New world bats harbor diverse influenza a viruses. PLoS Pathogens9(10), e1003657.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Townzen JS, Brower AVZ, Judd DD. (2008). Identification of mosquito bloodmeals using mitochondrial cytochrome oxidase subunit I and cytochrome b gene sequences. Medical and Veterinary Entomology22(4), 386-393.CrossRefPubMedGoogle Scholar
  68. VanDevanter DR, Warrener P, Bennett L, Schultz ER, Coulter S, Garber RL, Rose T M. (1996). Detection and analysis of diverse herpesviral species by consensus primer PCR. Journal of Clinical Microbiology, 34(7), 1666-1671.PubMedPubMedCentralGoogle Scholar
  69. Velasco-Villa A, Orciari LA, Juárez-Islas V, Gómez-Sierra M, Padilla-Medina I, Flisser, A., Souza V, Castillo A, Franka R, Escalante-Mañe M, Sauri-González I, Rupprecht CE. (2006). Molecular diversity of rabies viruses associated with bats in Mexico and other countries of the Americas. Journal of Clinical Microbiology44(5), 1697-1710.CrossRefPubMedPubMedCentralGoogle Scholar
  70. Voigt CC, Kelm DH. (2006). Host preference of the common vampire bat (Desmodus rotundus; Chiroptera) assessed by stable isotopes. Journal of Mammalogy 87, 1-6.CrossRefGoogle Scholar
  71. Wellehan JF, Johnson AJ, Harrach B, Benkö M, Pessier AP, Johnson CM, Garner MM, Childress A, Jacobson ER. (2004). Detection and analysis of six lizard adenoviruses by consensus primer PCR provides further evidence of a reptilian origin for the atadenoviruses. Journal of Virology78(23), 13366-13369.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Wibbelt G, Moore MS, Schountz T, Voigt CC. (2010). Emerging diseases in Chiroptera: why bats? Biology Letters6(4), 438-440.CrossRefPubMedPubMedCentralGoogle Scholar
  73. Wibbelt G, Kurth A, Yasmum N, Bannert M, Nagel S, Nitsche A, Ehlers B. (2007). Discovery of herpesviruses in bats. Journal of General Virology, 88(10), 2651-2655.CrossRefPubMedGoogle Scholar
  74. Wilkinson GS. (1984). Reciprocal food sharing in the vampire bat. Nature, 308(5955), 181-184.CrossRefGoogle Scholar
  75. Wilkinson GS. (1986). Social grooming in the common vampire bat, Desmodus rotundusAnimal Behaviour34(6), 1880-1889.CrossRefGoogle Scholar
  76. Wohlgenant TJ. (1994). Roost interactions between the common vampire bat (Desmodus rotundus) and two frugivorous bats (Phyllostomus discolor and Sturnira lilium) in Guanacaste, Costa Rica. Biotropica 26, 344-348.CrossRefGoogle Scholar
  77. Wong S, Lau S, Woo P, Yuen KY. (2007). Bats as a continuing source of emerging infections in humans. Reviews in Medical Virology 17(2):67−91.CrossRefPubMedGoogle Scholar

Copyright information

© International Association for Ecology and Health 2016

Authors and Affiliations

  • Amy K. Wray
    • 1
  • Kevin J. Olival
    • 2
    Email author
  • David Morán
    • 4
  • Maria Renee Lopez
    • 4
  • Danilo Alvarez
    • 4
  • Isamara Navarrete-Macias
    • 5
  • Eliza Liang
    • 2
    • 5
  • Nancy B. Simmons
    • 3
  • W. Ian Lipkin
    • 5
  • Peter Daszak
    • 2
  • Simon J. Anthony
    • 2
    • 5
  1. 1.Department of Ecology, Evolution, and Environmental BiologyColumbia UniversityNew YorkUSA
  2. 2.EcoHealth AllianceNew YorkUSA
  3. 3.American Museum of Natural HistoryNew YorkUSA
  4. 4.Center for Health StudiesUniversidad del Valle de GuatemalaGuatemala CityGuatemala
  5. 5.Center for Infection and Immunity, Mailman School of Public HealthColumbia UniversityNew YorkUSA

Personalised recommendations