Skip to main content

Advertisement

Log in

Natural Stressors and Ranavirus Susceptibility in Larval Wood Frogs (Rana sylvatica)

  • Original Contribution
  • Published:
EcoHealth Aims and scope Submit manuscript

Abstract

Chronic exposure to stressors has been shown to suppress immune function in vertebrates, making them more susceptible to pathogens. It is less clear, however, whether many natural stressors are immunosuppressive. Moreover, whether stressors make disease more likely or more severe in populations is unclear because animals respond to stressors both behaviorally and physiologically. We tested whether chronic exposure to three natural stressors of wood frog tadpoles—high-densities, predator-cues, and low-food conditions—influence their susceptibility to a lethal ranavirus both individually in laboratory experiments, and collectively in outdoor mesocosms. Prior to virus exposure, we observed elevated corticosterone only in low-food treatments, although other treatments altered rates of growth and development as well as tadpole behavior. None of the treatments, however, increased susceptibility to ranavirus as measured by the proportion of tadpoles that became infected or died, or the time to death compared to controls. In fact, mortality in the mesocosms was actually lower in the high-density treatment even though most individuals became infected, largely because of increased rates of metamorphosis. Overall we find no support for the hypothesis that chronic exposure to common, ecologically relevant challenges necessarily elevates corticosterone levels in a population or leads to more severe ranaviral disease or epidemics. Conditions may, however, conspire to make ranavirus infection more common in metamorphosing amphibians.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Acevedo-Whitehouse KA, Duffus A (2009) Effects of environmental change on wildlife health. Philosophical Transactions of the Royal Society B 364:3429-3438

    Article  Google Scholar 

  • Bates D, Maechler M, Bolker B (2011) lme4: Linear Mixed-Effects Models Using S4 Classes. R package version 0.999375-39. Available: http://CRAN.R-project.org/package=lme4

  • Belden LK, Kiesecker JM (2005) Glucocorticosteroid hormone treatment of larval treefrogs increases infection by Alaria sp. trematode cercariae. Journal of Parasitology 91(3):686-688

    Article  PubMed  CAS  Google Scholar 

  • Belden LK, Wojdak JM (2011) The combined influence of trematode parasites and predatory salamanders on wood frog (Rana sylvatica) tadpoles. Oecologia 166:1077-1086

    Article  PubMed  Google Scholar 

  • Belden LK, Rubbo MJ, Wingfield JC, Kiesecker JM (2007) Searching for the physiological mechanism of density-dependence: Does corticosterone regulate tadpole responses to density? Physiological and Biochemical Zoology 80(4):444-451

    Article  PubMed  CAS  Google Scholar 

  • Boonstra R, Hik D, Singleton GR, Tinnikov A (1998) The impact of predator-induced stress on the snowshoe hare cycle. Ecological Monographs 68: 371–394

    Article  Google Scholar 

  • Bosch J, Martínez-Solano I, Garcia-Paris M (2001) Evidence of a chytrid fungus infection involved in the decline of the common midwife toad (Alytes obstetricans) in protected areas in central Spain. Biological Conservation 97(3):331-337

    Article  Google Scholar 

  • Brunner JL, Collins JC (2009) Testing assumptions of the trade-off theory of the evolution of parasite virulence. Evolutionary Ecology Research 11:1169–1188

    Google Scholar 

  • Brunner JL, Schock DM, Collins JP (2007) Transmission dynamics of the amphibian ranavirus Ambystoma tigrinum virus. Diseases of Aquatic Organisms 77:87-95

    Article  PubMed  CAS  Google Scholar 

  • Brunner JL, Schock DM, Collins JP Davidson EW (2004) The role of an intraspecific reservoir in the persistence of a lethal ranavirus. Ecology 85(2):560-566

    Article  Google Scholar 

  • Brunner JL, Barnett KE, Gosier CJ, McNulty SA, Rubbo MJ, Kolozsvary MB (2011) Ranavirus infection in die-offs of vernal pool amphibians in New York, USA. Herpetological Review 42:76-79

    Google Scholar 

  • Carey C, Cohen N, Rollins-Smith L (1999) Amphibian declines: An immunological perspective. Developmental and Comparative Immunology 23(6):459-472

    Article  PubMed  CAS  Google Scholar 

  • Chen G, Robert J (2011) Antiviral immunity in amphibians. Viruses 3(11): 2065-2086

    Article  PubMed  CAS  Google Scholar 

  • Chinenov Y, Rogatsky I (2007) Glucocorticoids and the innate immune system: crosstalk with the toll-like receptor signaling network. Molecular and Cellular Endocrinology 275(1-2):30-42

    Article  PubMed  CAS  Google Scholar 

  • Collins JP, Storfer A (2003) Global amphibian declines: Sorting the hypotheses. Diversity and Distributions 9(2): 89-98

    Article  Google Scholar 

  • Crespi EJ, Denver RJ (2005) Roles of stress hormones in food intake regulation in anuran amphibians throughout the life cycle. Comparative Biochemistry and Physiology 141(4):381-390

    Article  PubMed  Google Scholar 

  • Dahl E, Orizoala G, Winberg S, Laurila A (2012) Geographic variation in corticosterone response to chronic predator stress in tadpoles. Journal of Evolutionary Biology 25:1066–1076

    Article  PubMed  CAS  Google Scholar 

  • Daszak P, Cunningham AA, Hyatt AD (2001) Anthropogenic environmental change and the emergence of infectious diseases in wildlife. Acta Tropica 78(2):103-116

    Article  PubMed  CAS  Google Scholar 

  • Davis RL, Lochmiller RL, Warde WD (1995) Spleenocyte subpopulations of weanling cotton rats (Sigmodon hispidus) are influenced by moderate protein intake. Journal of Mammalogy 76(3):912-924

    Article  Google Scholar 

  • Demas GE (2010) In vivo but not in vitro leptin enhances lymphocyte proliferation in Siberian hamsters (Phodopus sungorus). General and Comparative Endocrinology 166(2)314-319

    Article  PubMed  CAS  Google Scholar 

  • Denver RJ, Glennemeier KA, Boorse GC (2002) Endocrinology of complex life cycles: Amphibians. In: Hormones, brain and behavior, Pfaff D, Arnold A, Etgen A, Fahrbach S, Moss R, Rubin R (editors), San Diego: Academic Press, Inc., pp 469-513

    Chapter  Google Scholar 

  • Dhabhar F S (2002) Stress-induced augmentation of immune function—the role of stress hormones, leukocyte trafficking, and cytokines. Brain, Behavior, and Immunity 16(6):785-798

    Article  PubMed  CAS  Google Scholar 

  • Dhabhar FS (2009) Enhancing versus suppressive effects of stress on immune function: Implications for immunoprotection and immunopathology. Neuroimmunomodulation 16(5)300-317

    Article  PubMed  CAS  Google Scholar 

  • Echaubard P, Little K, Pauli B, Lesbarrères D (2010) Context-dependent effects of ranaviral infection on northern leopard frog life history traits. PLoS ONE 5(10):e13723

    Article  PubMed  Google Scholar 

  • Elenkov IJ, Chrousos GP (1999) Stress hormones, Th1/Th2 patterns, pro/anti-inflammatory cytokines and susceptibility to disease. Trends in Endocrinology and Metabolism 10(9):359-368

    Article  PubMed  CAS  Google Scholar 

  • Forson DD, Storfer A (2006) Atrazine increases ranavirus susceptibility in the tiger salamander, Ambystoma tigrinum. Ecological Applications 16:2325–2332

    Article  PubMed  Google Scholar 

  • Fraker ME, Hu F, Cuddapah V, McCollum SA, Relyea RA, Hempel J, et al. (2009) Characterization of an alarm pheromone secreted by amphibian tadpoles that induces behavioral inhibition and suppression of the neuroendocrine stress axis. Hormones and Behavior 55(4):520-529

    Article  PubMed  CAS  Google Scholar 

  • Glennemeier KA, Denver RJ (2002) Role for corticoids in mediating the response of Rana pipiens tadpoles to intraspecific competition. Journal of Experimental Zoology 292(1):32-40

    Article  PubMed  CAS  Google Scholar 

  • Gosner KL (1960) A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16:183-190

    Google Scholar 

  • Gray B (2010) cmprsk: Subdistribution Analysis of Competing Risks. R Package Version 2.2-1. Available: http://CRAN.R-project.org/package=cmprsk

  • Gray MJ, Miller DL, Hoverman JT (2009) Ecology and pathology of amphibian ranaviruses. Diseases of Aquatic Organisms 87(3):243-266

    Article  PubMed  Google Scholar 

  • Haddad J, Saadé N, Safieh-Garabedian B (2002) Cytokines and neuro-immune-endocrine interactions: a role for the hypothalamic-pituitary-adrenal revolving axis. Journal of Neuroimmunology 133:1-19

    Article  PubMed  CAS  Google Scholar 

  • Haislip NA, Hoverman JT, Miller DL, Gray MJ (2012) Natural stressors and disease risk: does the threat of predation increase amphibian susceptibility to ranavirus? Canadian Journal of Zoology 90:893-902

    Article  Google Scholar 

  • Harp EM, Petranka JW (2006) Ranavirus in wood frogs (Rana sylvatica): Potential sources of transmission within and between ponds. Journal of Wildlife Diseases 42(2):307-318

    PubMed  Google Scholar 

  • Hopkins WA, DuRant SE (2011) Innate immunity and stress physiology of eastern hellbenders (Cryptobranchus alleganiensis) from two stream reaches with differing habitat quality. General and Comparative Endocrinology 174:107-115

    Article  PubMed  CAS  Google Scholar 

  • Kerby JL, Hart AJ. Storfer A (2011) Combined effects of virus, pesticide, and predator cue on the larval tiger salamander (Ambystoma tigrinum). EcoHealth, 8(1):46-54

    Article  PubMed  Google Scholar 

  • Koprivnikar J (2010) Interactions of environmental stressors impact survival and development of parasitized larval amphibians. Ecological Applications 20(8):2263-2272

    Article  PubMed  CAS  Google Scholar 

  • Ledon-Rettig CC, Pfennig DW,Crespi EJ (2009) Stress hormones and the fitness consequences associated with the transition to a novel diet in larval amphibians. The Journal of Experimental Biology 212:3743-3750

    Article  PubMed  CAS  Google Scholar 

  • Lochmiller RL, Vestey MR, Boren JC (1993) Relationship between protein nutritional status and immunocompetence in Northern bobwhite chicks. The Auk 110(3):503-510

    Article  Google Scholar 

  • Mao J, Green DE, Fellers G, Chinchar VG (1999) Molecular characterization of iridoviruses isolated from sympatric amphibians and fish. Virus Research 63(1-2):45-52

    Article  PubMed  CAS  Google Scholar 

  • Martin LB (2009) Stress and immunity in wild vertebrates: Timing is everything. General and Comparative Endocrinology 163(1-2):70-76

    Article  PubMed  CAS  Google Scholar 

  • Martin LB, Hopkins WA, Mydlarz LD, Rohr JR (2010) The effects of anthropogenic global changes on immune functions and disease resistance. Annals of the New York Academy of Sciences 1195:129-148

    Article  PubMed  Google Scholar 

  • McCallum H, Barlow N, Hone J (2001) How should pathogen transmission be modelled? Trends in Ecology and Evolution 16(6):295-300

    Article  PubMed  Google Scholar 

  • McEwen BS, Wingfield JC (2003) The concept of allostasis in biology and biomedicine. Hormones and Behavior 43:2-15

    Article  PubMed  Google Scholar 

  • Moore JA (1939) Temperature tolerance and rates of development in the eggs of Amphibia. Ecology 20(4):459-478

    Article  Google Scholar 

  • Nain S, Bour A, Chalmers C, Smits J (2011) Immunotoxicity and disease resistance in Japanese quail (Corturnix corturnix japonica) exposed to malathion. Ecotoxicology 20(4):892-900

    Article  PubMed  CAS  Google Scholar 

  • Pickering AD. Pottinger TG (1989) Stress responses and disease resistance in salmonid fish: Effects of chronic elevation of plasma cortisol. Fish Physiology and Biochemistry, 7(1-6):253-258

    Article  CAS  Google Scholar 

  • Plowright RK, Sokolow SK, Gorman ME, Daszak P, Foley JE (2008) Causal inference in disease ecology: Investigating ecological drivers of disease emergence. Frontiers in Ecology and the Environment, 6(8):420-429

    Article  Google Scholar 

  • R Development Core Team (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Raffel TR, Hoverman JT, Halstead NT, Michel PJ, Rohr JR (2010) Parasitism in a community context: Trait-mediated interactions with competition and predation. Ecology 91(7):1900-1907

    Article  PubMed  Google Scholar 

  • Rasband WS (1997–2011) ImageJ. Bethesda, MD: US National Institutes of Health. http://imagej.nih.gov/ij/

  • Relyea RA (2002) Competitor-induced plasticity in tadpoles: consequences, cues, and connections to predator-induced plasticity. Ecological Monographs 72(4):523-540

    Article  Google Scholar 

  • Robert J (2010) Emerging ranaviral infectious diseases and amphibian decline. Diversity 2(3):314-330

    Article  Google Scholar 

  • Rollins-Smith LA (1998) Metamorphosis and the amphibian immune system. Immunological Reviews 166:221-230

    Article  PubMed  CAS  Google Scholar 

  • Rot-Nikcevic I, Denver RJ, Wassersug RJ (2005) The influence of visual and tactile stimulation on growth and metamorphosis in anuran larvae. Functional Ecology 19:1008-1016

    Article  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular Cloning: A laboratory manual, 3rd ed., New York: Cold Spring Harbor Laboratory Press

    Google Scholar 

  • Sapolsky RM, Romero LM, Munck AU (2000) How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocrine Reviews 21(1):55-89

    Article  PubMed  CAS  Google Scholar 

  • Sheridan JF, Dobbs C, Brown D, Zwilling B (1994) Psychoneuroimmunology: Stress effects on pathogenesis and immunity during infection. Clinical Microbiology Reviews 7(2):200-212

    PubMed  CAS  Google Scholar 

  • Teacher AGF, Cunningham AA, Garner TWJ (2010) Assessing the long-term impact of ranavirus infection in wild common frog populations. Animal Conservation 13(5):514-522

    Article  Google Scholar 

  • Therneau T, original Splus->R port by Lumley T (2011) Survival: Survival Analysis, Including Penalised Likelihood. R Package Version 2.36-5. Available: http://CRAN.R-project.org/package=survival

  • Van Buskirk J (2001) Specific induced responses to different predator species in anuran larvae. Journal of Evolutionary Biology 14:482-489

    Article  Google Scholar 

  • Venesky MD, Wilcoxen TE, Rensel MA, Rollins-Smith L, Kirby JL, Parris MJ (2012) Dietary protein restriction impairs growth, immunity, and disease resistance in southern leopard frog tadpoles. Oecologia 169:23-31

    Article  PubMed  Google Scholar 

  • Warne RW, Crespi EJ, Brunner JL (2011) Escape from the pond: Stress and developmental responses to ranavirus infection in wood frog tadpoles. Functional Ecology 25(1):139-146

    Article  Google Scholar 

  • Webster Marketon JI, Glaser R (2008) Stress hormones and immune function. Cellular Immunology 252(1–2):16–26

    Article  PubMed  CAS  Google Scholar 

  • Werner EE (1992) Competitive interactions between wood frog and northern leopard frog larvae: The influence of size and activity. Copeia 1992(1):26–35

    Article  Google Scholar 

  • Wingfield JC, Moore MC, Farner DS (1983) Endocrine responses to inclement weather in naturally breeding populations of white-crowned sparrows (Zonotrichia leucophrys pugetensis). The Auk 100:56-62

    Google Scholar 

Download references

Acknowledgments

We thank Robin Warne for providing RIA training and Keri VanCamp and Vassar College for the use of the Collins Field Station. Thanks also to Lynne Beatty, Deanna Russell, and Alex Guitard for their assistance with the mesocosm experiment. This research was funded by National Science Foundation grant IOS-0818212 to EJC and DEB1139199 to JLB and a Sigma Xi Grant in Aid of Research to BCR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesse L. Brunner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reeve, B.C., Crespi, E.J., Whipps, C.M. et al. Natural Stressors and Ranavirus Susceptibility in Larval Wood Frogs (Rana sylvatica). EcoHealth 10, 190–200 (2013). https://doi.org/10.1007/s10393-013-0834-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10393-013-0834-6

Keywords

Navigation