Skip to main content

Advertisement

Log in

The Impacts of Land Use Change on Malaria Vector Abundance in a Water-Limited, Highland Region of Ethiopia

  • Original Contribution
  • Published:
EcoHealth Aims and scope Submit manuscript

Abstract

Changes in land use and climate are expected to alter the risk of malaria transmission in areas where rainfall limits vector abundance. We use a coupled hydrology–entomology model to investigate the effects of land use change on hydrological processes impacting mosquito abundance in a highland village of Ethiopia. Land use affects partitioning of rainfall into infiltration and runoff that reaches small-scale topographic depressions, which constitute the primary breeding habitat of Anopheles arabiensis mosquitoes. A physically based hydrology model isolates hydrological mechanisms by which land use impacts pool formation and persistence, and an agent-based entomology model evaluates the response of mosquito populations. This approach reproduced observed interannual variability in mosquito abundance between the 2009 and 2010 wet seasons. Several scenarios of land cover were then evaluated using the calibrated, field-validated model. Model results show variation in pool persistence and depth, as well as in mosquito abundance, due to land use changes alone. The model showed particular sensitivity to surface roughness, but also to root zone uptake. Scenarios in which land use was modified from agriculture to forest generally resulted in lowest mosquito abundance predictions; classification of the entire domain as rainforest produced a 34% decrease in abundance compared to 2010 results. This study also showed that in addition to vegetation type, spatial proximity of land use change to habitat locations has an impact on mosquito abundance. This modeling approach can be applied to assess impacts of climate and land use conditions that fall outside of the range of previously observed variability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abeku, T. A., van Oortmarssen, G. J., Borsboom, G., de Vlas, S. J., & Habbema, J. (2003). Spatial and temporal variations of malaria epidemic risk in Ethiopia: factors involved and implications. Acta Tropica, 87, 331-340.

    Article  PubMed  Google Scholar 

  • Afrane, Y. A., Little, T. J., Lawson, B. W., Githeko, A. K., & Yan, G. (2008). Deforestation and vectoral capacity of Anopheles gambiae giles mosquitoes in malaria transmission, Kenya. Emerging Infectious Diseases, 14 (10):1533–1538.

    Article  PubMed  Google Scholar 

  • Asner, Gregory P., Scurlock, Jonathan M.O., Hicke, Jeffrey A. (2003). Global synthesis of leaf area index obbservations: implications for ecological and remote sensing studies. Global Ecology and Biogeography, 12, 191-205.

    Article  Google Scholar 

  • Assefa, A., Kassa, M., Tadese, G., Hussen, M., Abebe, A., & Tesfayae, M. (2010). Therapeutic efficacy of Artemether/Lumefantrin. Parasites and Vectors 3:1.

    Article  PubMed  Google Scholar 

  • Beier, J. C. (1998). Malaria parasite development in mosquitoes. Annual Review of Entomology, 43, 519-543.

    Article  PubMed  CAS  Google Scholar 

  • Bøgh, C., Lindsay, S., Clarke, S., Dean, A., Jawara, M., Pinder M., Thomas, C. (2007). High spatial resolution mapping of malaria transmission risk in the Gambia, West Africa, using LANDSAT TM satellite imagery. American Journal of Tropical Medicine and Hygiene 76(5):875–881.

    PubMed  Google Scholar 

  • Bomblies, A., and Eltahir, E.A.B. (2009). Assessment of the impact of climate shifts on malaria transmission in the Sahel. EcoHealth 6:426-437.

    Article  PubMed  Google Scholar 

  • Bomblies, A., Duchemin, J.-B., & Eltahir, E. A. (2008). Hydrology of malaria: model development and application to a Sahelian village. Water Resources Research, 44:W12445.

    Article  Google Scholar 

  • Bonan, G. B., Feddema, J. J., Oleson, K. W., Mearns, L. O., Buja, L. E., Meehl, G. A., et al. (2005). The importance of land-cover change in simulating future climates. Science, 310 (5754), 1674-1678.

    Article  PubMed  Google Scholar 

  • Briët, O. J., Vounatsou, P., Gunawardena, D. M., Galappathy, G. N., & Amerasinghe, P. H. (2008). Temporal correlation between malaria and rainfall in Sri Lanka. Malaria Journal 7:77.

    Article  PubMed  Google Scholar 

  • Calder, I. R., Hall, R. L., Bastable, H. G., Gunston, H. M., Shela, O., Chirwa, A., et al. (1995). The impact of land use change on water resources in sub-Saharan Africa: a modelling study of Lake Malawi. Journal of Hydrology, 170, 123-135.

    Article  Google Scholar 

  • Campbell, G. (1985). Soil physics with BASIC: transport models for soil-plant systems. New York: Elsevier Science Publishers B.V.

    Google Scholar 

  • Cerda, A. (1999). Parent material and vegetatioin affect soil erosion in Eastern Spain. Soil Science Society of American Journal, 63 (2), 362-368.

    Article  CAS  Google Scholar 

  • Chase, T. N., Pielke, R. A., Kittel, T. G., Nemanj, R., & Running, S. W. (1996). Sensitivity of a general circulation model to global changes in leaf area index. Journal of Geophysical Research, 101 (D3), 7393-7408.

    Article  Google Scholar 

  • Chow, Ven Te. (1959). Open Channel Hydraulics. New York: McGraw-Hill.

    Google Scholar 

  • Costantini C, Li SG, Della Torre A, Sagnon N, Coluzzi M, Taylor CE. (1996). Density, survival and dispersal of Anopheles gambiae complex mosquitoes in a west African Sudan savanna village. Medicinal and Veterinary Entomology, 10, 203-19.

    Article  CAS  Google Scholar 

  • Craig, M., Snow, R., & le Sueur, D. (1999). A climate-based distribution model of malaria transmission in sub-Saharan Africa. Parasitology Today, 15 (3), 106-111.

    Article  Google Scholar 

  • Depinay, J.-M. O., Mbogo, C. M., Killeen, G., Knols, B., Beier, J., Carlson, J., et al. (2004). A simulation model of African Anopheles ecology and population dynamics for the analysis of malaria transmission. Malaria Journal 3:29. doi:10.1186/1475-2875-3-29.

    Article  PubMed  Google Scholar 

  • Desconnets, J., Taupin, J., Lebel, T., & Leduc, C. (1997). Hydrology of the HAPEX-Sahel central super-site: surface water drainage and aquifer recharge through the pool systems. Journal of Hydrology, 188-189, 155-178.

    Article  Google Scholar 

  • Detinova, T. (1962). Age grouping methods in Díptera of medical importance with special reference to some vectors of malaria. World Health Organization, 47, pp. 13-191.

    CAS  Google Scholar 

  • Dunne, T. & Black,R. D. (1970). An experimental investigation of runoff production in permeable soils. Water Resources Research, 6(2), 478–490

    Article  Google Scholar 

  • Dunne, T. & Black,R. D. (1970). Partial Area Contributions to Storm Runoff in a Small New England Watershed, Water Resources Research, 6(5), 1296–1311

    Article  Google Scholar 

  • Feddes, R. A., Hoff, H., Bruen, M., Dawson, T., de Rosnay, P., Dirmeyer, P., et al. (2001). Modeling root water uptake in hydrological and climate models. Bulletin of the American Meteorological Society, 82 (12), 2797-2809.

    Article  Google Scholar 

  • Fontaine, R. E., Najjar, A., & Prince, J. S. (1961). The 1958 malaria epidemic in Ethiopia. American Journal of Tropical Medicine and Hygiene, 10, 795-803.

    PubMed  CAS  Google Scholar 

  • Freebairn, D., & Wockner, G. (1986). A study of soil erosion on vertisols of the Eastern Darling Downs, Queensland.I. Effects of surface conditions on soil movement within Contour Bay catchments. Australian Journal of Soil Research, 24 (2), 135-158.

    Article  Google Scholar 

  • Freeze, R. A., & Cherry, J. A. (1979). Groundwater. Prentice-Hall.

    Google Scholar 

  • Gale, M., & Grigal, D. (1987). Vertical root distribution of northern tree species in relation to successional status. Canadian Journal of Forest Research, 17, 829-834.

    Article  Google Scholar 

  • Gillies M.T., Coetzee M. (1987) Supplement to the Anophelinae of Africa South of the Sahara. Johannesburg, South Africa: South African Institute of Medical Research, 55.

    Google Scholar 

  • Gillies, M. T., & Wilkes, T. J. (1965). A study of the age-composition of populations of Anopheles gambiae Giles and A. funestus Giles in North-Eastern Tanzania. Bulletin of Entomological Research, 56, 237-262.

    Article  PubMed  CAS  Google Scholar 

  • Gimnig, J. E., Ombok, M., Kamau, L., & Hawley, W. A. (2001). Characteristics of larval Anopheline (Diptera: Culicidae) habitats in western Kenya. Journal of Medical Entomology, 38 (2), 282-288.

    Article  PubMed  CAS  Google Scholar 

  • Gordon, L., Dunlop, M., & Foran, B. (2003). Land cover change and water vapour flows: Learning from Australia. Philisphical Transactions of the Royal SocietyLond B Biological Sciences, 358 (1440), 1973-1984.

    Article  Google Scholar 

  • Horsfall, W. R. (1943). Some responses of the malaria mosquito to light. Annals of the Entomological Society of America, 36 (1), 41-45.

    Google Scholar 

  • Horton RE (1933) The role of infiltration in the hydrologic cycle. In: Transactions of the American Geophysics Union, 14th Annual Meeting, pp 446–460.

  • Houghton, R. (1994). The worldwide extent of land-use change. Bioscience, 44 (5), 305-313.

    Article  Google Scholar 

  • Hutjesa, R., Kabat, P., Running, S., Shuttleworth, W., Field, C., Bass, B., et al. (1998). Biospheric aspects of the hydrological cycle. Journal of Hydrology, 212-213, 1-21.

    Article  Google Scholar 

  • Jackson, R., Canadall, J., Ehleringer, J., Mooney, H., Sala, O., & Schluze, E. (1996). A global analysis of root distributions for terrestrial biomes. Oecologia, 108 (3), 389-411.

    Article  Google Scholar 

  • Jackson, R., Mooney, H., & Schulze, E. (1997). A global budget for fine root biomass, surface area, and nutrient contents. Ecology, 94, 7362-7366.

    CAS  Google Scholar 

  • Jackson, R. B., Sperry, J. S., & Dawson, T. E. (2000). Root water uptake and transport: using physiological processes in global predictions. Trends in Plant Science, 5 (11), 482-488.

    Article  PubMed  CAS  Google Scholar 

  • Kiszewski, A. E., & Teklehaimanot, A. (2004). A review of the clinical and epidemiologic burdens of epidemic malaria. American Journal of Tropical Medicine and Hygiene, 71 (2), 128-135.

    PubMed  Google Scholar 

  • Kitron, U. (1998). Landscape ecology and epidemiology of vector-borne diseases, tools for spatial analysis. Journal of Medical Entomology, 35(4), 435-445.

    PubMed  CAS  Google Scholar 

  • Lafferty, K. D. (2009). The ecology of climate change and infectious disease. Ecology, 90 (4), 888-900.

    Article  PubMed  Google Scholar 

  • Li K, Coe M, Ramankutty N (2005) Investigation of hydrological variability in west Africa using land surface models. Journal of Climate 18:3173–3188.

    Article  Google Scholar 

  • Lieshout, M. v., Kovats, R., Livermore, M., & Martens, P. (2004). Climate change and malaria: analysis ofSRES climate and socio-economic scenarios. Global Environmental Change, 14 (1), 87-99.

    Article  Google Scholar 

  • Lindblade, K. A., Walker, E. D., Onapa, A. W., Katungu, J., & Wilson, M. L. (2000). Land use change alters malaria transmission parameters by modifying temperature in a highland area of Uganda. Tropical Medicine and International Health, 5 (4), 263-274.

    Article  PubMed  CAS  Google Scholar 

  • Lindsay, S., & Martens, W. (1998). Malaria in the African highlands: past, present, and future. Geneva Switzerland: World Health Organization.

    Google Scholar 

  • Martens, W.J.M., Jetten, T.H., & Focks, D.A. (1997) Sensitivity of malaria, schistosomiasis and dengue to global warming. Earth and Environmental Science, 35(2), 145-156.

    Google Scholar 

  • Mboera, L.E.G., Kihonda, J., Braks, M.A. & Knols, B.G.J. (1998) Influence of Centers for Disease Control light trap position, relative to a human-baited bednet, on catches of Anopheles gambiae and Culex quinquefasciatus in Tanzania. American Journal of Tropical Medicine and Hygiene 59, 595-596.

    PubMed  CAS  Google Scholar 

  • Minakawa, N., Mutero, C., Githure, J., Beier, J., & Yan, G. (1999). Spatial distribution and habitat characterization of anopheline mosquito larvae in western Kenya. American Journal of Tropical Medicine and Hygiene, 61 (6), 1010-1016.

    PubMed  CAS  Google Scholar 

  • Minakawa, N., Sonye, G., Mogi, M., & Yan, G. (2004). Habitat characteristics of Anopheles gambiae s.s. larvae. Medical and Veterinary Entomology, 18, 301-305.

    Article  PubMed  CAS  Google Scholar 

  • Minakawa, N., Munga, S., Atieli, F., Mushinzimana, E., Zhou, G., Githeko, A. K., et al. (2005). Spatial distribution of anopheline larval habitats in western Kenyan highlands: effects of land cover types and topography. The American Journal of Tropical Medicine and Hygiene, 73 (1), 157-165.

    PubMed  Google Scholar 

  • Mumeka, A. (2009). Effect of deforestation and subsistence agriculture on runoff of the Kafue River headwaters, Zambia. Hydrological Science Journal, 31 (4), 543-554.

    Article  Google Scholar 

  • Munga, S., Minakawa, N., Zhou, G., Mushinzimana, E., Barrack, O.-O., Githeko, A., et al. (2006). Association between land cover and habitat productivity of malaria vectors in Western Kenyan highlands. The American Journal of Tropical Medicine and Hygiene, 74 (1), 69-75.

    PubMed  Google Scholar 

  • Myneni, R.B., Hoffman, S., Knyazikhin, Y., Privette, J.L., Glassy, J., Tian, Y., et al. (2002). Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sensing of Environment, 83(2), 214-231.

    Article  Google Scholar 

  • Odongo-Aginya, E., Ssegwanyi, G., Kategere, P., & Vuz, P. (2005). Relationship between malaria infection intensity and rainfall pattern in Entebbe peninsula, Uganda. Afican Health Sciences, 5 (3), 238-245.

    PubMed  CAS  Google Scholar 

  • Olson, Sarah H., Gangnon, R., Silveira, G.A. & Patz, J.A. (2010). Deforestation and malaria in Mancio Lima County, Brazil. Emerging Infectious Diseases, 67 (7), 1108-1115.

    Article  Google Scholar 

  • Onori, E., & Grab, B. (1980). Indicators for the forecasting of malaria epidemics. Bulletin of the World Health Organization, 58 (1), 91-98.

    PubMed  CAS  Google Scholar 

  • Ostfeld, R.S., Glass, G.G., Keesing, F. (2005) Spatial epidemiology: an emerging (or re-emerging) discipline. Trends in Ecology and Evolution, 20(6), 328-336.

    Article  PubMed  Google Scholar 

  • Pascual, M., Ahumada, J.A., Chaves, L.F., Rodó, X., & Bouma, M. (2006) Malaria resurgence in the East African highlands: Temperature trends revisited. Proceedings of the National Academy of Sciences of the United States of America, 103 (15), 5829-5834.

    Article  PubMed  CAS  Google Scholar 

  • Patz, J. A., & Olson, S.H.. (2006). Climate change and health: global to local influence on disease risk. Annals of Tropical Medicine and Parasitology, 100 (5-6), 535-549.

    Article  PubMed  CAS  Google Scholar 

  • Patz, J. A., Strzepek, K., Lele, S., Hedden, M., Greene, S., Noden, B., et al. (1998). Predicting key malaria transmission factors, biting and inoculation rates, using modelled soil moisture in Kenya. Tropical Medicine and International Health, 3 (10), 818-827.

    Article  PubMed  CAS  Google Scholar 

  • Peterson, A. T. (2009). Shifting suitability for malaria vectors across Africa with warmer climates. BMC Infectious Diseases, 9:59.

    Article  PubMed  Google Scholar 

  • Pollard, D., & Thompson, S. L. (1995). Use of a land-surface-transfer scheme (LSX) in a global climate model: the response to doubling stomatal resistance. Global and Planetary Change, 10, 129-161.

    Article  Google Scholar 

  • Reisen, W.K. (2010). Landscape epidemiology of vector-borne diseases. Annual Review of Entomology, 55, 461-483.

    Article  PubMed  CAS  Google Scholar 

  • Richards, L. (1931). Capillary conduction of liquids through porous mediums. Journal of Applied Physics, 1 (5), 10.1063-1.1745010

    Google Scholar 

  • Service M. (1993). Mosquito Ecology: Field Sampling Methods (2nd Edition ed.). New Yori: Springer.

    Book  Google Scholar 

  • Shaman, J., Spiegelman, M., Cane, M., & Stieglitz, M. (2006). A hydrologically driven model of swamp water mosquito population dynamics. Ecological Modelling, 194, 395-404.

    Article  Google Scholar 

  • Tanser, F. C., Sharp, B., & le Sueur, D. (2003). Potential Effect of Climate Change on Malaria Transmission in Africa. The Lancet, 362 (9398), 1792-1798.

    Article  Google Scholar 

  • World Health Organization. (2009). World Health Report. World Health Organization. Geneva Switzerland: World Health Organization.

    Google Scholar 

  • Yasuoko, J., & Levins, R. (2007). Impact of deforestation and agricultural development on Anopheline ecology and malaria epidimiology. The American Journal of Tropical Medicine and Hygiene, 76 (3), 450-460.

    Google Scholar 

  • Ye-Ebiyo, Y., Pollack, R.J., Kiszewski, A., and Spielman, A. (2003). Enhancement of development of larval Anopheles arabiensis by proximity to flowering maize (Zea mays) in turbid water and when crowded. American Journal of Tropical Medicine and Hygiene 68(6): 748-752.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jody J. Stryker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stryker, J.J., Bomblies, A. The Impacts of Land Use Change on Malaria Vector Abundance in a Water-Limited, Highland Region of Ethiopia. EcoHealth 9, 455–470 (2012). https://doi.org/10.1007/s10393-012-0801-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10393-012-0801-7

Keywords

Navigation