Skip to main content

The Ecology of Emerging Infectious Diseases in Migratory Birds: An Assessment of the Role of Climate Change and Priorities for Future Research

Abstract

Pathogens that are maintained by wild birds occasionally jump to human hosts, causing considerable loss of life and disruption to global commerce. Preliminary evidence suggests that climate change and human movements and commerce may have played a role in recent range expansions of avian pathogens. Since the magnitude of climate change in the coming decades is predicted to exceed climatic changes in the recent past, there is an urgent need to determine the extent to which climate change may drive the spread of disease by avian migrants. In this review, we recommend actions intended to mitigate the impact of emergent pathogens of migratory birds on biodiversity and public health. Increased surveillance that builds upon existing bird banding networks is required to conclusively establish a link between climate and avian pathogens and to prevent pathogens with migratory bird reservoirs from spilling over to humans.

This is a preview of subscription content, access via your institution.

Figure 1

References

  • Abdelwhab EM, Selim AA, Arafa A, Galal S, Kilany WH, Hassan MK, et al. (2010). Circulation of avian influenza H5N1 in live bird markets in Egypt. Avian Diseases 54:911-914.

    PubMed  Article  CAS  Google Scholar 

  • Alerstam T (1990). Bird Migration. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Altizer S, Bartel R, and Han BA (2011). Animal migration and infectious disease risk. Science 331:296-302.

    PubMed  Article  CAS  Google Scholar 

  • Atkinson CT, and LaPointe DA (2009). Introduced avian diseases, climate change, and the future of Hawaiian Honeycreepers. Journal of Avian Medicine and Surgery 23:53-63.

    PubMed  Article  Google Scholar 

  • Bensch S, and Akesson A (2003). Temporal and spatial variation of hematozoans in Scandinavian willow warblers. Journal of Parasitology 89:388-391.

    PubMed  Article  Google Scholar 

  • Bensch S, Grahn M, Muller N, Gay L, and Akesson S (2009a). Genetic, morphological, and feather isotope variation of migratory willow warblers show gradual divergence in a ring. Molecular Ecology 18:3087-3096.

    PubMed  Article  Google Scholar 

  • Bensch S, Hellgren O, and Perez-Tris J (2009b). MalAvi: a public database of malaria parasites and related haemosporidians in avian hosts based on mitochondrial cytochrome b lineages. Molecular Ecology Resources 9:1353-1358.

    PubMed  Article  Google Scholar 

  • Berthold P (2001). Bird Migration: A General Survey. Second Edition. Oxford University Press, Oxford, UK.

    Google Scholar 

  • Both C, Bouwhuis S, Lessells CM, and Visser ME (2006). Climate change and population declines in a long-distance migratory bird. Nature 441:81-83.

    PubMed  Article  CAS  Google Scholar 

  • Breban R, Drake JM, Stallknecht DE, and Rohani P (2009). The role of environmental transmission in recurrent avian influenza epidemics. Plos Computational Biology 5:e1000346.

    PubMed  Article  Google Scholar 

  • Brooks DR, and Hoberg EP (2007). How will global climate change affect parasite-host assemblages? Trends in Parasitology 23:571-574.

    PubMed  Article  Google Scholar 

  • Cattadori IM, Haydon DT, and Hudson PJ (2005). Parasites and climate synchronize red grouse populations. Nature 433:737-741.

    PubMed  Article  CAS  Google Scholar 

  • Chamberlain CP, Bensch S, Feng X, Akesson S, and Andersson T (2000). Stable isotopes examined across a migratory divide in Scandinavian willow warblers (Phylloscopus trochilus trochilus and Phylloscopus trochilus acredula) reflect their African winter quarters. Proceedings of the Royal Society of London Series B-Biological Sciences 267:43-48.

    Article  CAS  Google Scholar 

  • Cooper CB, Hochachka WM, and Dhondt AA (2007). Contrasting natural experiments confirm competition between house finches and house sparrows. Ecology 88:864-870.

    PubMed  Article  Google Scholar 

  • Danielova V, Daniel M, Schwarzova L, Materna J, Rudenko N, Golovchenko M, et al. (2010). Integration of a tick-borne encephalitis virus and Borrelia burgdorferi sensu lato into mountain ecosystems, following a shift in the altitudinal limit of distribution of their vector, Ixodes ricinus (Krkonose Mountains, Czech Republic). Vector-Borne and Zoonotic Diseases 10:223-230.

    PubMed  Article  Google Scholar 

  • Daszak P, Cunningham AA, and Hyatt AD (2000). Wildlife ecology - Emerging infectious diseases of wildlife - Threats to biodiversity and human health. Science 287:443-449.

    PubMed  Article  CAS  Google Scholar 

  • Devictor V, Julliard R, Couvet D, and Jiguet F (2008). Birds are tracking climate warming, but not fast enough. Proceedings of the Royal Society B-Biological Sciences 275:2743-2748.

    Article  Google Scholar 

  • Duval L, Robert V, Csorba G, Hassanin A, Randrianarivelojosia M, Walston J, et al. (2007). Multiple host-switching of Haemosporidia parasites in bats. Malaria Journal 6:157.

    PubMed  Article  Google Scholar 

  • Faaborg J, Holmes RT, Anders AD, Bildstein KL, Dugger KM, Gauthreaux SA, et al. (2010). Conserving migratory land birds in the New World: Do we know enough? Ecological Applications 20:398-418.

    PubMed  Article  Google Scholar 

  • Fallon SM, Bermingham E, and Ricklefs RE (2005). Host specialization and geographic localization of avian malaria parasites: A regional analysis in the Lesser Antilles. American Naturalist 165:466-480.

    PubMed  Article  Google Scholar 

  • Fuller T, Saatchi S, Curd EE, Toffelmier E, Thomassen H, Buermann W, et al. (2010). Mapping the risk of avian influenza in wild birds in the US. BMC Infectious Diseases 10:187.

    PubMed  Article  Google Scholar 

  • Gaidet N, Cappelle J, Takekawa JY, Prosser DJ, Iverson SA, Douglas DC, et al. (2010). Potential spread of highly pathogenic avian influenza H5N1 by wildfowl: dispersal ranges and rates determined from large-scale satellite telemetry. Journal of Applied Ecology 47:1147-1157.

    Article  Google Scholar 

  • Garamszegi L (2011). Climate change increases the risk of malaria in birds. Global Change Biology 17:1751-1759.

    Article  Google Scholar 

  • Gilbert M, Slingenbergh J, and Xiao X (2008). Climate change and avian influenza. Revue scientifique et technique - Office international des epizooties 27:459-466.

    CAS  Google Scholar 

  • Globig A, Staubach C, Beer M, Koppen U, Fiedler W, Nieburg M, et al. (2009). Epidemiological and ornithological aspects of outbreaks of highly pathogenic avian influenza virus H5N1 of asian lineage in wild birds in Germany, 2006 and 2007. Transboundary and Emerging Diseases 56:57-72.

    PubMed  Article  CAS  Google Scholar 

  • Hobson KA (2011). Isotopic ornithology: a perspective. Journal of Ornithology 152:49-66.

    Article  Google Scholar 

  • Hobson KA, and Wassenaar LI, editors. (2008). Tracking Animal Migration with Stable Isotopes. Elsevier, London.

    Google Scholar 

  • Hochachka WM, and Dhondt AA (2000). Density-dependent decline of host abundance resulting from a new infectious disease. Proceedings of the National Academy of Sciences of the United States of America 97:5303-5306.

    PubMed  Article  CAS  Google Scholar 

  • Hosseini P, Sokolow SH, Vandegrift KJ, Kilpatrick AM, and Daszak P (2010). Predictive power of air travel and socio-economic data for early pandemic spread. Plos ONE 5: e12763.

    PubMed  Article  Google Scholar 

  • Irwin DE, Irwin JH, and Smith TB (2011). Genetic variation and seasonal migratory connectivity in Wilson’s warblers (Wilsonia pusilla): species-level differences in nuclear DNA between western and eastern populations. Molecular Ecology 20:3102-3115.

    PubMed  Article  Google Scholar 

  • Jiguet F, Devictor V, Ottvall R, Van Turnhout C, Van der Jeugd H, and Lindstrom A (2010). Bird population trends are linearly affected by climate change along species thermal ranges. Proceedings of the Royal Society B-Biological Sciences 277:3601-3608.

    Article  Google Scholar 

  • Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, et al. (2008). Global trends in emerging infectious diseases. Nature 451:990-993.

    PubMed  Article  CAS  Google Scholar 

  • Kayser FH, Bienz KA, Eckert J, and Zinkernagel RM (2005). Medical Microbiology. Thieme, Stuttgart.

    Google Scholar 

  • Kearney M, and Porter W (2009). Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecology Letters 12:334-350.

    PubMed  Article  Google Scholar 

  • Keesing F, Belden LK, Daszak P, Dobson A, Harvell CD, Holt RD, et al. (2010). Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 468:647-652.

    PubMed  Article  CAS  Google Scholar 

  • Keller I, Korner-Nievergelt F, and Jenni L (2009). Within-winter movements: a common phenomenon in the Common Pochard Aythya ferina. Journal of Ornithology 150:483-494.

    Article  Google Scholar 

  • Kelly JF, Ruegg KC, and Smith TB (2005). Combining isotopic and genetic markers to identify breeding origins of migrant birds. Ecological Applications 15:1487-1494.

    Article  Google Scholar 

  • Keusch GT, Pappaioanou M, Gonzalez MC, Scott KA, and Tsai P (2009). Sustaining Global Surveillance and Response to Emerging Zoonotic Diseases. National Academies Press, Washington, DC.

    Google Scholar 

  • Kilpatrick AM (2011). Globalization, land use, and the invasion of West Nile virus. Science 334:323-327.

    PubMed  Article  CAS  Google Scholar 

  • Kilpatrick AM, Daszak P, Goodman SJ, Rogg H, Kramer LD, Cedeno V, et al. (2006a). Predicting pathogen introduction: West Nile virus spread to Galapagos. Conservation Biology 20:1224-1231.

    PubMed  Article  Google Scholar 

  • Kilpatrick AM, Daszak P, Jones MJ, Marra PP, and Kramer LD (2006b). Host heterogeneity dominates West Nile virus transmission. Proceedings of the Royal Society B-Biological Sciences 273:2327-2333.

    Article  Google Scholar 

  • Kilpatrick AM, Meola MA, Moudy RM, and Kramer LD (2008). Temperature, viral genetics, and the transmission of West Nile virus by Culex pipiens mosquitoes. Plos Pathogens 4:e1000092.

    PubMed  Article  Google Scholar 

  • Kilpatrick AM, Dupuis AP, Chang GJJ, and Kramer LD (2010). DNA vaccination of American Robins (Turdus migratorius) against West Nile Virus. Vector-Borne and Zoonotic Diseases 10:377-380.

    PubMed  Article  Google Scholar 

  • King LJ, Anderson LR, Blackmore CG, Blackwell MJ, Lautner EA, Marcus LC, et al. (2008). Executive summary of the AVMA One Health Initiative Task Force report. Javma-Journal of the American Veterinary Medical Association 233:259-261.

    PubMed  Article  Google Scholar 

  • Kistler AL, Gancz A, Clubb S, Skewes-Cox P, Fischer K, Sorber K, et al. (2008). Recovery of divergent avian bornaviruses from cases of proventricular dilatation disease: Identification of a candidate etiologic agent. Virology Journal 5:88.

    PubMed  Article  Google Scholar 

  • La Sorte FA, and Thompson FR (2007). Poleward shifts in winter ranges of North American birds. Ecology 88:1803-1812.

    PubMed  Article  Google Scholar 

  • Levin II, Outlaw DC, Vargas FH, and Parker PG (2009). Plasmodium blood parasite found in endangered Galapagos penguins (Spheniscus mendiculus). Biological Conservation 142:3191-3195.

    Article  Google Scholar 

  • Li YD, Li P, Lei FM, Guo S, Ding CQ, Xin Z, et al. (2010). Persistent circulation of highly pathogenic influenza H5N1 virus in Lake Qinghai area of China. Avian Diseases 54:821-829.

    PubMed  Article  Google Scholar 

  • Liu WM, Li YY, Learn GH, Rudicell RS, Robertson JD, Keele BF, et al. (2010). Origin of the human malaria parasite Plasmodium falciparum in gorillas. Nature 467:420-425.

    PubMed  Article  CAS  Google Scholar 

  • McKibbin WJ, and Sidorenki AA (2006). Global Macroeconomic Consequences of Pandemic Influenza. Lowry Institute for International Policy, Sydney, Australia.

    Google Scholar 

  • Meltzer MI, Cox NJ, and Fukuda K (1999). The economic impact of pandemic influenza in the United States: Priorities for intervention. Emerging Infectious Diseases 5:659-671.

    PubMed  Article  CAS  Google Scholar 

  • Moreau RE, and Monk JF (1972). Palaearctic-African Birds Migration System. Academic Press, London.

    Google Scholar 

  • Newton I (2008). The Migration Ecology of Birds. Elsevier, Amsterdam.

    Google Scholar 

  • Novembre J, Johnson T, Bryc K, Kutalik Z, Boyko AR, Auton A, et al. (2008). Genes mirror geography within Europe. Nature 456:98-101.

    PubMed  Article  CAS  Google Scholar 

  • Parrish CR, Holmes EC, Morens DM, Park EC, Burke DS, Calisher CH, et al. (2008). Cross-species virus transmission and the emergence of new epidemic diseases. Microbiology and Molecular Biology Reviews 72:457-470.

    PubMed  Article  Google Scholar 

  • Pepin KM, Lass S, Pulliam JRC, Read AF, and Lloyd-Smith JO (2010). Identifying genetic markers of adaptation for surveillance of viral host jumps. Nature Reviews Microbiology 8:802-813.

    PubMed  Article  CAS  Google Scholar 

  • Reed KD, Melski JW, Graham MB, Regnery RL, Sotir MJ, Wegner MV, et al. (2004). The detection of monkeypox in humans in the Western Hemisphere. New England Journal of Medicine 350:342-350.

    PubMed  Article  CAS  Google Scholar 

  • Reperant LA, Fuckar NS, Osterhaus A, Dobson AP, and Kuiken T (2010). Spatial and temporal association of outbreaks of H5N1 influenza virus infection in wild birds with the 0 degrees C isotherm. Plos Pathogens 6:e1000854.

    PubMed  Article  Google Scholar 

  • Ricklefs RE, and Outlaw DC (2010). A molecular clock for malaria parasites. Science 329:226-229.

    PubMed  Article  CAS  Google Scholar 

  • Robinson RA, Lawson B, Toms MP, Peck KM, Kirkwood JK, Chantrey J, et al. (2010). Emerging infectious disease leads to rapid population declines of common British birds. Plos One 5:e12215.

    PubMed  Article  Google Scholar 

  • Roche B, Lebarbenchon C, Gauthier-Clerc M, Chang CM, Thomas F, Renaud F, et al. (2009). Water-borne transmission drives avian influenza dynamics in wild birds: The case of the 2005-2006 epidemics in the Camargue area. Infection Genetics and Evolution 9:800-805.

    Article  Google Scholar 

  • Rolshausen G, Hobson KA, and Schaefer HM (2010). Spring arrival along a migratory divide of sympatric blackcaps (Sylvia atricapilla). Oecologia 162:175-183.

    PubMed  Article  Google Scholar 

  • Rvachev LA, and Longini IM (1985). A mathematical model for the global spread of influenza. Mathematical Biosciences 75:3-23.

    Article  Google Scholar 

  • Saino N, Ambrosini R, Rubolini D, von Hardenberg J, Provenzale A, Huppop K, et al. (2011). Climate warming, ecological mismatch at arrival and population decline in migratory birds. Proceedings of the Royal Society B-Biological Sciences 278:835-842.

    Article  Google Scholar 

  • Salomon R, and Webster RG (2009). The influenza virus enigma. Cell 136:402-410.

    PubMed  Article  CAS  Google Scholar 

  • Slenning BD (2010). Global climate change and implications for disease emergence. Veterinary Pathology 47:28-33.

    PubMed  Article  CAS  Google Scholar 

  • Smith TB, Clegg SM, Kimura M, Ruegg K, Mila B, and Lovette I (2005). Molecular genetic approaches to linking breeding and overwintering areas in five Neotropical migrant passerines. Pages 222-234 in R. Greenberg and P. P. Marra, editors. Birds of Two Worlds: The Ecology and Evolution of Migration. Johns Hopkins University Press, Baltimore.

    Google Scholar 

  • Stutchbury BJM, Tarof SA, Done T, Gow E, Kramer PM, Tautin J, et al. (2009). Tracking long-distance songbird migration by using geolocators. Science 323:896.

    PubMed  Article  CAS  Google Scholar 

  • Swaddle JP, and Calos SE (2008). Increased avian diversity is associated with lower incidence of human West Nile infection: observation of the dilution effect. Plos One 3:e2488.

    PubMed  Article  Google Scholar 

  • Tomkiewicz SM, Fuller MR, Kie JG, and Bates KK (2010). Global positioning system and associated technologies in animal behaviour and ecological research. Philosophical Transactions of the Royal Society B-Biological Sciences 365:2163-2176.

    Article  Google Scholar 

  • Traill LW, Bradshaw CJA, Field HE, and Brook BW (2009). Climate change enhances the potential impact of infectious disease and harvest on tropical waterfowl. Biotropica 41:414-423.

    Article  Google Scholar 

  • Ulbert S (2011). West Nile virus: the complex biology of an emerging pathogen. Intervirology 54:171-184.

    PubMed  Article  Google Scholar 

  • Van Riper III C, Van Riper SG, Goff ML, and Laird M (1986). The epizootiology and ecological significance of malaria in Hawaiian land birds. Ecological Monographs 56:327-344.

    Article  Google Scholar 

  • Vandegrift KJ, Sokolow SH, Daszak P, Kilpatrick AM (2010) Ecology of avian influenza viruses in a changing world. Pages 113-128 in R. S. Ostfeld and W. H. Schlesinger, editors. Year in Ecology and Conservation Biology 2010. New York Academy of Sciences, New York.

    Google Scholar 

  • Webster MS, Marra PP, Haig SM, Bensch S, and Holmes RT (2002). Links between worlds: unraveling migratory connectivity. Trends in Ecology & Evolution 17:76-83.

    Article  Google Scholar 

  • Woolhouse MEJ, and Gowtage-Sequeria S (2005). Host range and emerging and reemerging pathogens. Emerging Infectious Diseases 11:1842-1847.

    PubMed  Article  Google Scholar 

Download references

Acknowledgments

We thank three anonymous reviewers for comments that improved the manuscript. This work was supported by the US National Science Foundation Research Coordination Network Migration Interest Group: Research Applied Toward Education. JN was funded by the NSF (Grant number 0933731) and the Searle Scholars Program. JP was funded by the Spanish Ministry of Science and Technology (CGL2007-62937/BOS). JW was funded by the Swedish Research Council FORMAS (221-2008-326). SB was funded by the Swedish Research Council (621-2007-5193). TBS and TF were funded by the joint NSF-National Institutes of Health Ecology of Infectious Diseases Program (Grant number EF-0430146), by US Environmental Protection Agency grant (R 833778), and by the National Institute of Allergy and Infectious Diseases (Grant number EID-1R01AI074059-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trevon Fuller.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 370 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fuller, T., Bensch, S., Müller, I. et al. The Ecology of Emerging Infectious Diseases in Migratory Birds: An Assessment of the Role of Climate Change and Priorities for Future Research. EcoHealth 9, 80–88 (2012). https://doi.org/10.1007/s10393-012-0750-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10393-012-0750-1

Keywords

  • influenza A virus
  • malaria
  • salmonella
  • West Nile virus
  • zoonoses