Skip to main content

Modeling Potential Distribution of Oligoryzomys longicaudatus, the Andes Virus (Genus: Hantavirus) Reservoir, in Argentina

Abstract

We constructed a model to predict the potential distribution of Oligoryzomys longicaudatus, the reservoir of Andes virus (Genus: Hantavirus), in Argentina. We developed an extensive database of occurrence records from published studies and our own surveys and compared two methods to model the probability of O. longicaudatus presence; logistic regression and MaxEnt algorithm. The environmental variables used were tree, grass and bare soil cover from MODIS imagery and, altitude and 19 bioclimatic variables from WorldClim database. The models performances were evaluated and compared both by threshold dependent and independent measures. The best models included tree and grass cover, mean diurnal temperature range, and precipitation of the warmest and coldest seasons. The potential distribution maps for O. longicaudatus predicted the highest occurrence probabilities along the Andes range, from 32°S and narrowing southwards. They also predicted high probabilities for the south-central area of Argentina, reaching the Atlantic coast. The Hantavirus Pulmonary Syndrome cases coincided with mean occurrence probabilities of 95 and 77% for logistic and MaxEnt models, respectively. HPS transmission zones in Argentine Patagonia matched the areas with the highest probability of presence. Therefore, colilargos presence probability may provide an approximate risk of transmission and act as an early tool to guide control and prevention plans.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. Anderson RP, Lew D, Peterson AT (2003) Evaluating predictive models of species’ distributions: criteria for selecting optimal models. Ecological Modelling 162: 211–232

    Article  Google Scholar 

  2. Araújo MB, Guisan A (2006) Five (or so) challenges for species distribution modelling. Journal of Biogeography 33: 1677-1688

    Article  Google Scholar 

  3. Belmar-Lucero S, Godoy P, Ferres M, Vial P, Palma RE (2009) Range expansion of Oligoryzomys longicaudatus (Rodentia: Sigmodontinae) in Patagonian Chile and first record of Hantavirus in the region. Revista Chilena de Historia Natural 82: 265-275

    Article  Google Scholar 

  4. Botten J, Mirowsky K, Ye CY, Gottlieb K, Saavedra M, Ponce L, Hjelle B (2002) Shedding and intra-cage transmission of Sin Nombre hantavirus in the deer mouse (Peromyscus maniculatus) model. Journal of Virology 76: 7587–7594

    PubMed  Article  CAS  Google Scholar 

  5. Cantoni G, Padula P, Calderón G, Mills J, Herrero E, Sandoval P, et al. (2001) Seasonal variation in prevalence of antibody to hantaviruses in rodents from southern Argentina. Tropical Medicine and International Health 6: 811-816

    PubMed  Article  CAS  Google Scholar 

  6. Carbajo AE, Pardiñas UFJ (2007) Spatial distribution model of a hantavirus reservoir, the long-tailed colilargo (Oligoryzomys longicaudatus), in Argentina. Journal of Mammalogy 88: 1555-1568

    Article  Google Scholar 

  7. Cueto GR, Teta P, De Carli P (2008) Rodents from southern Patagonian semi-arid steppes (Santa Cruz Province, Argentina). Journal of Arid Environments 72: 56–61

    Article  Google Scholar 

  8. Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan A, et al. (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29: 129-151

    Article  Google Scholar 

  9. Elith J, Phillips SJ, Hastie T, Dudík M, En Chee Y, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Diversity and Distributions 17: 43-57

    Article  Google Scholar 

  10. Ferro LI, Bárquez RM (2008) Comentarios sobre la distribución de Abrothrix andinus y Calomys lepidus (Rodentia: Cricetidae) en la provincia de Tucumán, Argentina. Mastozoología Neotropical 15: 197-201

    Google Scholar 

  11. Glass GE, Childs JE, Korch GW, Leduc JW (1988) Association of intraspecific wounding with hantaviral infection in wild rats (Rattus norvegicus). Epidemiology and Infection 101:459-472

    PubMed  Article  CAS  Google Scholar 

  12. González LA, Murúa R, Jofre C (2000) Habitat utilization of two muroid species in relation to population outbreaks in southern temperate forests of Chile. Revista Chilena de Historia Natural 73: 489–495

    Article  Google Scholar 

  13. Gonzalez-Ittig RE, Theiler GR, Gardenal CN (2002) A contribution to the subgeneric systematics of Oligoryzomys (Rodentia, Muridae) from Argentina by means of PCR-RFLP patterns of mitochondrial DNA. Biochemical Systematics and Ecology 30: 23–33

    Article  CAS  Google Scholar 

  14. Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecological Modelling 135: 147-186

    Article  Google Scholar 

  15. Hansen M, De Fries RS, Townshend JRG, Carroll M, Dimiceli C, Sohlberg RA (2003) Global Percent Tree Cover at a Spatial Resolution of 500 Meters: First Results of the MODIS Vegetation Continuous Fields Algorithm. Earth Interactions 7: 1-15

    Article  Google Scholar 

  16. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965-1978

    Article  Google Scholar 

  17. Jayat JP, Pacheco S (2006) Distribución de Necromys lactens y Phyllotis osilae (Rodentia: Cricetidae: Sigmodontinae) en el noroeste argentino: Modelos predictivos basados en el concepto de nicho ecológico. Mastozoología Neotropical 13: 69-88

    Google Scholar 

  18. Jayat JP, Ortiz PE, Teta P, Pardiñas UFJ, D’Elía G (2006) Nuevas localidades argentinas para algunos roedores sigmodontinos (Rodentia: Cricetidae). Mastozoología Neotropical 13: 51-67

    Google Scholar 

  19. Jayat JP, Pacheco SE, Ortiz PE (2009) A predictive distribution model for Andinomys edax (Rodentia: Cricetidae) in Argentina. Mastozoología Neotropical 16: 321-332

    Google Scholar 

  20. Kosoy MY, Slonova RA, Mills JN, Mandel E, Childs JE (1997) Community structure and prevalence of hantavirus infection in rodents: a geographic division of the enzootic area in far eastern Russia. Journal of Vector Ecology 22: 52-63

    PubMed  CAS  Google Scholar 

  21. Larrieu E, Herrero E, García Cachau M, Labanchi JL, Mancini S, Padula P, et al. (2003) Seroprevalencia de hantavirus en roedores y casos humanos en el sur de Argentina. Revista Brasilera de Epidemiología 6: 68-75

    Article  Google Scholar 

  22. Levis S, Morzunov S, Rowe J, Enria D, Pini N, Calderón G, et al. (1998) Genetic diversity and epidemiology of hantaviruses in Argentina. Journal of Infectious Diseases 177:529-38

    PubMed  Article  CAS  Google Scholar 

  23. Liu C, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28: 385-393

    Article  Google Scholar 

  24. Lopez N, Padula P, Rossi C, Lazaro ME, Franze-Fernandez MT (1996) Genetic identification of a new hantavirus causing severe pulmonary syndrome in Argentina. Virology 219: 1-4

    Article  Google Scholar 

  25. Lozada M, Guthmann N, Baccala N (2000) Microhabitat selection of five sigmodontine rodents in a forest-steppe transition zone in Northwestern Patagonia. Studies on Neotropical Fauna and Environment 35: 85-90

    Article  Google Scholar 

  26. Mann G (1978) Los pequeños mamíferos de Chile. Gayana, Zoología 40: 1-342

    Google Scholar 

  27. Martin GM (2010) Geographic distribution and historical occurrence of Dromiciops gliroides Thomas (Metatheria: Microbiotheria). Journal of Mammalogy 91: 1025-1035

    Article  Google Scholar 

  28. Martinez VP, Bellomo C, San Juan J, Pinna D, Forlenza R, Elder M, et al. (2005) Person-to-person transmission of Andes virus. Emerging Infectious Diseases 11: 1848–1853

    PubMed  Article  Google Scholar 

  29. Mills J, Childs JE (1998) Ecologic studies of rodent reservoirs: their relevance for human health. Emerging Infectious Diseases 4: 529-537

    PubMed  Article  CAS  Google Scholar 

  30. Mills J, Ksiazek TG, Ellis BA, Rollin PE, Nichols ST, Yates TL, et al. (1997) Patterns of association with host and habitat: Antibody reactive with Sin Nombre virus in small mammals in the major biotic communities of the southwestern United States. American Journal of Tropical Medicine and Hygiene 56:273-284

    PubMed  CAS  Google Scholar 

  31. Monjeau JA, Sikes RS, Birney EC, Guthmann N, Phillips C J (1997) Small mammal community composition within the major landscape divisions of Patagonia, southern Argentina. Mastozoología Neotropical 4: 113-127

    Google Scholar 

  32. Monjeau JA, Rotela CH, Lamfri M, Márquez J, Scavuzzo CM, Stanulescu M, et al. (2011) Estimating habitat suitability for potential hantavirus reservoirs in north-western Patagonia using satellite imagery: Searching for the best predictive tools. Mammalian Biology 76:409-416

    Google Scholar 

  33. Murúa R, Gonzalez LA (1982) Microhabitat selection in two Chilean cricetid rodents. Oecologia 52: 12-15

    Article  Google Scholar 

  34. Murúa R, González LA, Meserve PL (1986) Population ecology of Oryzomys longicaudatus philippii (Rodentia: Cricetidae) in southern Chile. Journal of Animal Ecology 55: 281-293

    Article  Google Scholar 

  35. Murúa R, Meserve PL, González L, Jofré C (1987) The small mammal community of a Chilean temperate rainforest: Lack of evidence of competition between dominant species. Journal of Mammalogy 68:729-738

    Article  Google Scholar 

  36. Murúa R, González LA, Lima M (2003) Population dynamics of rice rats (a hantavirus reservoir) in southern Chile: Feedback structure and non-linear effects of climatic oscillations. Oikos 102:137-145

    Article  Google Scholar 

  37. Nabte MJ, Saba SL, Monjeau A (2009) Mamíferos terrestres de la Península Valdés: lista sistemática comentada. Mastozoología Neotropical 16: 109-120

    Google Scholar 

  38. Padula PJ, Colavecchia SB, Martinez VP, Gonzalez Della Valle MO, Edelstein A, Miguel SDL, et al. (2000) Genetic diversity, distribution, and serological features of hantavirus infection in five countries in South America. Journal of Clinical Microbiology 38: 3029-3035

    PubMed  CAS  Google Scholar 

  39. Padula P, Figueroa R, Navarrete M, Pizarro E, Cadiz R, Bellomo C, et al. (2004) Transmission study of Andes hantavirus infection in wild Sigmodontine rodents. Journal of Virology 78: 11972-11979

    PubMed  Article  CAS  Google Scholar 

  40. Palma RE, Rivera-Milla E, Salazar-Bravo J, Torres-Pérez F, Pardiñas UFJ, Marquet P, et al. (2005) Phylogeography of Oligoryzomys longicaudatus (Rodentia: Sigmodontinae) in temperate South America. Journal of Mammalogy 86: 191–2005

    Article  Google Scholar 

  41. Pardiñas UFJ, Teta P (2007) Micromamíferos del sector oriental de la Altiplanicie del Somuncurá (Río Negro, Argentina). Mastozoología Neotropical 14: 271-278

    Google Scholar 

  42. Pardiñas UFJ, Teta P, Cirignoli S, Podestá DH (2003) Micromamíferos (Didelphimorphia y Rodentia) de norpatagonia extra andina, Argentina: Taxonomía alfa y biogeografía. Mastozoología Neotropical 10: 69-113

    Google Scholar 

  43. Pardiñas UFJ, Abba AM, Merino ML (2004) Micromamíferos (Didelphimorphia y Rodentia) del sudoeste de la provincia de Buenos Aires (Argentina): Taxonomía y distribución. Mastozoología Neotropical 11: 211-232

    Google Scholar 

  44. Pearson OP (1983) Characteristics of a mammalian fauna from forests in Patagonia, Southern Argentina. Journal of Mammalogy 64: 476-492

    Article  Google Scholar 

  45. Pearson OP (2002) A perplexing outbreak of mice in Patagonia, Argentina. Studies on Neotropical Fauna and Environment 37: 187-200

    Article  Google Scholar 

  46. Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecology and Biogeography 12: 361-371

    Article  Google Scholar 

  47. Pearson OP, Pearson AK (1982) Ecology and biogeography of the southern rainforests of Argentina. Special Publication Pymatuning Laboratory of Ecology 6: 129-142

    Google Scholar 

  48. Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31: 161-175

    Article  Google Scholar 

  49. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling 190: 231-259

    Article  Google Scholar 

  50. Piudo L, Monteverde M, Gonzalez Capria S, Padula P, Carmanchahi P (2005) Distribution and abundance of sigmodontine rodents in relation to hantavirus in Neuquén, Argentina. Journal of Vector Ecology 30: 119-125

    PubMed  Google Scholar 

  51. Piudo L, Monteverde MJ, Walker RS, Douglass RJ (2011) Rodent community structure and Andes virus infection in sylvan and peridomestic habitats in Northwestern Patagonia, Argentina. Vector-borne and Zoonotic Diseases 11:315-324

    PubMed  Article  Google Scholar 

  52. Polop FJ, Provensal MC, Pini N, Levis SC, Priotto JW, Enría D, et al. (2010) Temporal and spatial host abundance and prevalence of Andes Hantavirus in Southern Argentina. EcoHealth 7: 176-184

    PubMed  Article  Google Scholar 

  53. Porcasi X, Calderon GE, Lamfri M, Scavuzzo M, Sabattini MS, Polop JJ (2005) Predictive distribution maps of rodent reservoir species of zoonoses in Southern America. Mastozoologia Neotropical 12: 199-216

    Google Scholar 

  54. Richards CL, Carstens BC, Knowles LL (2007) Distribution modeling and statistical phylogeography: an integrative framework for generating and testing alternative biogeographical hypotheses. Journal of Biogeography 34: 1833-1845

    Article  Google Scholar 

  55. Rivera PC, González-Ittig RE, Rossi Fraire HJ, Levis S, Gardenal CN (2007) Molecular identification and phylogenetic relationships among the species of the genus Oligoryzomys (Rodentia, Cricetidae) present in Argentina, putative reservoirs of hantaviruses. Zoologica Scripta 36: 231-239

    Article  Google Scholar 

  56. Rosenberg MS, Anderson CD (2011) PASSaGE: pattern analysis, spatial statistics and geographic exegesis. Version 2. Methods in Ecology and Evolution, 2:229–232. doi:10.1111/j.2041-210X.2010.00081.x

  57. Sing T, Sander O, Beerenwinkel N, Lengauer T (2005) ROCR: visualizing classifier performance in R. Bioinformatics 21: 3940-3941

    PubMed  Article  CAS  Google Scholar 

  58. R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, url:http://www.R-project.org/. Accessed March, 2011.

  59. Tognelli MF, Roig-Junent SA, Marvaldi AE, Flores GE, Lobo JM (2009) An evaluation of methods for modelling distribution of Patagonian insects. Revista Chilena de Historia Natural 82: 347-360

    Article  Google Scholar 

  60. Torres R, Jayat JP (2010) Modelos predictivos de distribución para cuatro especies de mamíferos (cingulata, artiodactyla y rodentia) típicas del Chaco en Argentina. Mastozoología Neotropical 17: 335-352

    Google Scholar 

  61. Yahnke CJ, Meserve PL, Ksiazek TG, Mills JN (2001) Patterns of infection with Laguna Negra virus in wild populations of Calomys laucha in the central Paraguayan chaco. American Journal of Tropical Medicine and Hygiene 65: 768-776

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was made possible by grants from the Fondo para la Investigación Científica y Tecnológica (FONCYT) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). This article was written as a result of an internship of V.A. funded by Fulbright and Bunge and Born Foundation at the Johns Hopkins Bloomberg School of Public Health, Baltimore, USA. V.A. thanks Fulbright and Bunge and Born Foundation for the financial assistance and the host institution for great working facilities. We are also grateful to two anonymous reviewers who provided valuable comments and suggestions on an early version of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Verónica Andreo.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Andreo, V., Glass, G., Shields, T. et al. Modeling Potential Distribution of Oligoryzomys longicaudatus, the Andes Virus (Genus: Hantavirus) Reservoir, in Argentina. EcoHealth 8, 332–348 (2011). https://doi.org/10.1007/s10393-011-0719-5

Download citation

Keywords

  • Argentina
  • hantavirus reservoir
  • logistic regression
  • MaxEnt algorithm
  • Oligoryzomys longicaudatus
  • potential distribution