Skip to main content
Log in

The Value of Well-Designed Experiments in Studying Diseases with Special Reference to Amphibians

  • Short Communication
  • Published:
EcoHealth Aims and scope Submit manuscript

Abstract

Relatively few studies of amphibian diseases have employed standard ecological experimental designs. We discuss what constitutes a well-designed ecological experiment and encourage their use in disease studies. We illustrate how well-designed experiments can be used to determine the effects of pathogens on amphibians and we illustrate how ancillary information, including that collected using molecular tools, can be used to enhance the value of such experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Altizer S, Harvell D, Fridley E (2003) Rapid evolutionary dynamics and disease threats to biodiversity. Trends in Ecology & Evolution 18:589-596

    Article  Google Scholar 

  • Berger L, Speare R, Daszak P, Green DE, Cunningham AA, Goggins CL, Slocombe R, Ragan MA, Hyatt AD, McDonald KR, Hines HB, Lips KR, Marantelli G, Parkes H (1998) Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. Proceedings of the National Academy of Sciences of the United States of America 95:9031–9036

    Article  CAS  Google Scholar 

  • Blaustein AR, Hoffman PD, Hokit DG, Kiesecker JM, Walls SC, Hays JB (1994) UV-repair and resistance to solar UV-B in amphibian eggs: a link to population declines? Proceedings of the National Academy of Sciences of the United States of America 91:1791–1795

    Article  CAS  Google Scholar 

  • Blaustein AR, Romansic JM, Scheessele EA, Han BA, Pessier AP, Longcore JE (2005) Interspecific variation in susceptibility of frog tadpoles to the pathogenic fungus Batrachochytrium dendrobatidis. Conservation Biology 19:1460-1468

    Article  Google Scholar 

  • Boyle DG, Boyle DB, Olsen V, Morgan JAT, Hyatt AD (2004) Rapid quantitative detection of chytridiomycosis (Batrachochytrium dendrobatidis) in amphibian samples using real-time Taqman PCR assay. Diseases of Aquatic Organisms 60:141-148

    Article  CAS  Google Scholar 

  • Daszak P, Berger L, Cunningham AA, Hyatt AD, Green DE, Speare R (1999) Emerging infectious diseases and amphibian population declines. Emerging Infectious Diseases 5:735-748

    Article  CAS  Google Scholar 

  • Daszak P, Cunningham AC, Hyatt AD (2000) Emerging infectious diseases of wildlife—Threats to biodiversity and human health. Science 287:443-449

    Article  CAS  Google Scholar 

  • Daszak P, Cunningham AC, Hyatt AD (2003) Infectious disease and amphibian population declines. Diversity and Distributions 9:141-150

    Article  Google Scholar 

  • Dobson A, Foufopoulos J (2001) Emerging infectious pathogens of wildlife. Philosophical. Transactions of the Royal Society London B 356:1001-1012

    Article  CAS  Google Scholar 

  • Han B, Bradley P, Blaustein AR (2008) Ancient behaviors of larval amphibians in response to an emerging fungal pathogen, Batrachochytrium dendrobatidis. Behavioral Ecology and Sociobiology 63:241-250

    Article  Google Scholar 

  • Harris RN, Lauer A, Simon MA, Banning JL, Alford RA (2009) Addition of antifungal skin bacteria to salamanders ameliorates the effects of chytridiomycosis. Diseases of Aquatic Organisms 83:11-16

    Article  Google Scholar 

  • Hudson PJ, Dobson AP, Newborn D (1998) Prevention of population cycles by parasite removal. Science 282:2256-2258

    Article  CAS  Google Scholar 

  • Jenkins SH (2004) How Science Works. New York: Oxford University Press

    Google Scholar 

  • Kiesecker JM, Blaustein AR (1999) Pathogen reverses competition between larval amphibians. Ecology 80:2442-2448

    Article  Google Scholar 

  • Lauer A, Simon MA, Banning JL, Lam B, Harris RN (2008) Diversity of cutaneous bacteria with antifungal activity isolated from female four-toed salamanders. The ISME Journal 2:145–157

    Article  CAS  Google Scholar 

  • Marshall BJ, Armstrong JA, McGechie DB, Clancy RJ (1985) Attempt to fulfill Koch’s postulates for pyloric Campbylobacter. Medical Journal of Australia 142:436-439

    CAS  Google Scholar 

  • McCallum H, Dobson A (1995) Detecting disease and parasite threats to endangered species and ecosystems. Trends in Ecology & Evolution 10:190-194

    Article  Google Scholar 

  • Mendelson JR III et al (2006) Confronting amphibian declines and extinctions. Science 313:48

    Article  CAS  Google Scholar 

  • Parris MJ, Beaudoin JG (2004) Chytridiomycosis impacts predator-prey interactions in larval amphibian communities. Oecologia 140:626-632

    Article  Google Scholar 

  • Parris MJ, Cornelius TO (2004) Fungal pathogen causes competitive and developmental stress in larval amphibian communities. Ecology 85:3385-3395

    Article  Google Scholar 

  • Ramsey FL, Shafer DW (1997) The Statistical Sleuth: A Course in Methods of Data Analysis. Albany, New York: Duxbury Press

    Google Scholar 

  • Resetarits WJ, Bernardo J (1998) Experimental ecology: issues and perspectives. New York: Oxford University Press

    Google Scholar 

  • Retallick RWR, Miera V, Richards KL, Field KJ, Collins JP (2006) A non-lethal technique for detecting the chytrid fungus Batrachochytrium dendrobatidis on tadpoles. Diseases of Aquatic Organisms 72:77-85

    Article  Google Scholar 

  • Rowley JJL, Alford RA (2007) Movement patterns and habitat use of rainforest stream frogs in northern Queensland, Australia: implications for extinction vulnerability. Wildlife Research 34:371-378

    Article  Google Scholar 

  • Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ASL, Fischman DL, Waller RW (2004) Status and trends of amphibian declines and extinctions worldwide. Science 306:1783-1786

    Article  CAS  Google Scholar 

  • Thagard P (1999) How scientists explain disease. Princeton, New Jersey: Princeton University Press

    Google Scholar 

  • Tompkins DM, Begon M (1999) Parasites can regulate wildlife populations. Parasitology Today 15:311-313

    Article  CAS  Google Scholar 

  • Woodhams DC, Alford RA (2005) Ecology of chytridiomycosis in rainforest stream frog assemblages of tropical Queensland. Conservation Biology 19:1449-1459

    Article  Google Scholar 

  • Woodhams DC, Alford RA, Marantelli G (2003) Emerging disease of amphibians cured by elevated body temperature. Diseases of Aquatic Organisms 55:65-67

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Paul Bradley, Jing Chen, Yun Soo Chung, Alex Flecker, Steph Gervasi, Barbara Han, and Catherine Searle for reading earlier versions of the manuscript and for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew R. Blaustein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blaustein, A.R., Alford, R.A. & Harris, R.N. The Value of Well-Designed Experiments in Studying Diseases with Special Reference to Amphibians. EcoHealth 6, 373–377 (2009). https://doi.org/10.1007/s10393-009-0266-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10393-009-0266-5

Keywords

Navigation