, Volume 6, Issue 4, pp 522–539 | Cite as

Correlates of Viral Richness in Bats (Order Chiroptera)

Original Contribution


Historic and contemporary host ecology and evolutionary dynamics have profound impacts on viral diversity, virulence, and associated disease emergence. Bats have been recognized as reservoirs for several emerging viral pathogens, and are unique among mammals in their vagility, potential for long-distance dispersal, and often very large, colonial populations. We investigate the relative influences of host ecology and population genetic structure for predictions of viral richness in relevant reservoir species. We test the hypothesis that host geographic range area, distribution, population genetic structure, migratory behavior, International Union for Conservation of Nature and Natural Resources (IUCN) threat status, body mass, and colony size, are associated with known viral richness in bats. We analyze host traits and viral richness in a generalized linear regression model framework, and include a correction for sampling effort and phylogeny. We find evidence that sampling effort, IUCN status, and population genetic structure correlate with observed viral species richness in bats, and that these associations are independent of phylogeny. This study is an important first step in understanding the mechanisms that promote viral richness in reservoir species, and may aid in predicting the emergence of viral zoonoses from bats.


Chiroptera emerging infectious disease IUCN population structure sampling effort viral richness 


  1. Aguilar-Setien A, Romero-Almaraz ML, Sanchez-Hernandez C, Figueroa R, Juarez-Palma LP, Garcia-Flores MM, et al. (2008) Dengue virus in Mexican bats. Epidemiology and Infection 136:1678–1683CrossRefGoogle Scholar
  2. Allworth A, Murray K, Morgan J (1996) A human case of encephalitis due to a lyssavirus recently identified in fruit bats. Communicable Diseases Intelligence 20:504Google Scholar
  3. Altizer S, Dobson A, Hosseini P, Hudson P, Pascual M, Rohani P (2006) Seasonality and the dynamics of infectious diseases. Ecology Letters 9:467–484CrossRefGoogle Scholar
  4. Altizer S, Nunn CL, Lindenfors P (2007) Do threatened hosts have fewer parasites? A comparative study in primates. Journal of Animal Ecology 76:304–314CrossRefGoogle Scholar
  5. Amengual B, Bourhy H, Lopez-Roig M, Serra-Cobo J (2007) Temporal dynamics of European bat lyssavirus type 1 and survival of Myotis myotis bats in natural colonies. PLoS ONE 2:e566CrossRefGoogle Scholar
  6. Anderson RM, May RM (1979) Population biology of infectious diseases: part I. Nature 280:361–367CrossRefGoogle Scholar
  7. Anderson RM, May RM (1986) The invasion, persistence and spread of infectious diseases within animal and plant communities. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 314:533–570CrossRefGoogle Scholar
  8. Arguin PM, Murray-Lillibridge K, Miranda ME, Smith JS, Calaor AB, Rupprecht CE (2002) Serologic evidence of lyssavirus infections among bats, the Philippines. Emerging Infectious Diseases 8:258–262CrossRefGoogle Scholar
  9. Arnold BD (2007) Population structure and sex-biased dispersal in the forest dwelling vespertilionid bat, Myotis septentrionalis. American Midland Naturalist 157:374–384CrossRefGoogle Scholar
  10. Asikainen K, Hanninen T, Henttonen H, Niemimaa J, Laakkonen J, Andersen HK, et al. (2000) Molecular evolution of Puumala hantavirus in Fennoscandia: phylogenetic analysis of strains from two recolonization routes, Karelia and Denmark. Journal of General Virology 81:2833–2841Google Scholar
  11. Barlow ND (1996) The ecology of wildlife disease control: simple models revisited. Journal of Applied Ecology 33:303–314CrossRefGoogle Scholar
  12. Barrett J, Rodwell B, Lunt R, Rupprecht C, Field H, Smith G, et al. (2005) Australian bat lyssavirus: observations of natural and experimental infection in bats. In: Wildlife Disease Association International Conference, Cairns, Queensland, Australia, 149 ppGoogle Scholar
  13. Biek R, Drummond AJ, Poss M (2006) A virus reveals population structure and recent demographic history of its carnivore host. Science 311:538–541CrossRefGoogle Scholar
  14. Bininda-Emonds OR, Cardillo M, Jones KE, MacPhee RD, Beck RM, Grenyer R, et al. (2007) The delayed rise of present-day mammals. Nature 446:507–512CrossRefGoogle Scholar
  15. Blanton JD, Hanlon CA, Rupprecht CE (2007) Rabies surveillance in the United States during 2006. Journal of the American Veterinary Medical Association 231:540–556CrossRefGoogle Scholar
  16. Bohm M, Hutchings MR, White PC (2009) Contact networks in a wildlife-livestock host community: identifying high-risk individuals in the transmission of bovine TB among badgers and cattle. PLoS One 4:e5016CrossRefGoogle Scholar
  17. Bolzoni L, Real L, De Leo G (2007) Transmission heterogeneity and control strategies for infectious disease emergence. PLoS One 2:e747CrossRefGoogle Scholar
  18. Boots M, Hudson PJ, Sasaki A (2004) Large shifts in pathogen virulence relate to host population structure. Science 303:842–844CrossRefGoogle Scholar
  19. Boots M, Mealor M (2007) Local interactions select for lower pathogen infectivity. Science 315:1284–1286CrossRefGoogle Scholar
  20. Boots M, Sasaki A (1999) ‘Small worlds’ and the evolution of virulence: infection occurs locally and at a distance. Proceedings of the Royal Society of London. Series B: Biological Sciences 266:1933–1938CrossRefGoogle Scholar
  21. Boots M, Sasaki A (2000) The evolutionary dynamics of local infection and global reproduction in host-parasite interactions. Ecology Letters 3:181–185CrossRefGoogle Scholar
  22. Botvinkin AD, Poleschuk EM, Kuzmin IV, Borisova TI, Gazaryan SV, Yager P, et al. (2003) Novel lyssaviruses isolated from bats in Russia. Emerging Infectious Diseases 9:1623–1625Google Scholar
  23. Bull JJ, Molineux IJ, Rice WR (1991) Selection of benevolence in a host-parasite system. Evolution 45:875–882CrossRefGoogle Scholar
  24. Burland TM, Barratt EM, Beaumont MA, Racey PA (1999) Population genetic structure and gene flow in a gleaning bat, Plecotus auritus. Proceedings of the Royal Society of London. Series B: Biological Sciences 266:975–980Google Scholar
  25. Burland TM, Worthington-Wilmer JW (2001) Seeing in the dark: molecular approaches to the study of bat populations. Biological Reviews 76:389–409CrossRefGoogle Scholar
  26. Burnham KP, Anderson DR (2002) Model Selection and Multimodel Inference, 2nd ed., New York: SpringerGoogle Scholar
  27. Burns KF, Farinacci CJ (1956) Virus of bats antigenically related to St. Louis encephalitis. Science 123:227CrossRefGoogle Scholar
  28. Burns KF, Farinacci CF, Murnane VC (1956) Insectivorous bats naturally infected with rabies in the southwestern United States. American Journal of Public Health 46:1089–1097CrossRefGoogle Scholar
  29. Calisher CH, Chappell WA, Maness KS, Lord RD, Sudia WD (1971) Isolations of Nepuyo virus strains from Honduras, 1967. American Journal of Tropical Medicine and Hygiene 20:331–337Google Scholar
  30. Calisher CH, Childs JE, Field HE, Holmes KV, Schountz T (2006) Bats: important reservoir hosts of emerging viruses. Clinical Microbiology Reviews 19:531–545CrossRefGoogle Scholar
  31. Campbell P, Schneider CJ, Adnan AM, Zubaid A, Kunz TH (2006) Comparative population structure of Cynopterus fruit bats in peninsular Malaysia and southern Thailand. Molecular Ecology 15:29–47CrossRefGoogle Scholar
  32. Caraco T, Glavanakov S, Chen G, Flaherty JE, Ohsumi TK, Szymanski BK (2002) Stage-structured infection transmission and a spatial epidemic: a model for Lyme disease. American Naturalist 160:348–359CrossRefGoogle Scholar
  33. Carrington CVF, Foster JE, Zhu CH, Zhang JX, Smith GJD, Thompson N, et al. (2008) Detection and phylogenetic analysis of group 1 coronaviruses in South American bats. Emerging Infectious Diseases 14:1890–1893CrossRefGoogle Scholar
  34. Carstens BC, Sullivan J, Davalos LM, Larsen PA, Pedersen SC (2004) Exploring population genetic structure in three species of Lesser Antillean bats. Molecular Ecology 13:2557–2566CrossRefGoogle Scholar
  35. Castella V, Ruedi M, Excoffier L (2001) Contrasted patterns of mitochondrial and nuclear structure among nursery colonies of the bat Myotis myotis. Journal of Evolutionary Biology 14:708–720CrossRefGoogle Scholar
  36. Castella V, Ruedi M, Excoffier L, Ibanez C, Arlettaz R, Hausser J (2000) Is the Gibraltar strait a barrier to gene flow for the bat Myotis myotis (Chiroptera: Vespertilionidae)? Molecular Ecology 9:1761–1772CrossRefGoogle Scholar
  37. CDC (2000) Update: West Nile virus activity—Northeastern United States, 2000. MMWR. Morbidity and Mortality Weekly Report 49:820–822Google Scholar
  38. Chua KB, Crameri G, Hyatt A, Yu M, Tompang MR, Rosli J, et al. (2007) A previously unknown reovirus of bat origin is associated with an acute respiratory disease in humans. Proceedings of the National Academy of Sciences of the United States of America 104:11424–11429Google Scholar
  39. Chua KB, Koh CL, Hooi PS, Wee KF, Khong JH, Chua BH, et al. (2002) Isolation of Nipah virus from Malaysian Island flying-foxes. Microbes and Infection 4:145–151CrossRefGoogle Scholar
  40. Chua KB, Voon K, Crameri G, Tan HS, Rosli J, McEachern JA, et al. (2008) Identification and characterization of a new orthoreovirus from patients with acute respiratory infections. PLoS ONE 3:e3803CrossRefGoogle Scholar
  41. Chua KB, Wang LF, Lam SK, Crameri G, Yu M, Wise T, et al. (2001) Tioman virus, a novel paramyxovirus isolated from fruit bats in Malaysia. Virology 283:215-229CrossRefGoogle Scholar
  42. Cleaveland S, Laurenson MK, Taylor LH (2001) Diseases of humans and their domestic mammals: pathogen characteristics, host range and the risk of emergence. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 356:991–999CrossRefGoogle Scholar
  43. Conner MM, Miller MW (2004) Movement patterns and spatial epidemiology of a prion disease in mule deer population units. Ecological Applications 14:1870–1881CrossRefGoogle Scholar
  44. Constantine DG (1970) Bats in relation to the health, welfare, and economy of man. In: Biology of Bats, Wimsatt WA (editor), New York: Academic Press, pp 319–449Google Scholar
  45. Constantine DG, Woodall DF (1964) Latent infection of Rio Bravo virus in salivary glands of bats. Public Health Reports 79:1033–1039Google Scholar
  46. Correa-Giron P, Calisher CH, Baer GM (1972) Epidemic strain of Venezuelan equine encephalomyelitis virus from a vampire bat captured in Oaxaca, Mexico, 1970. Science 175:546–547CrossRefGoogle Scholar
  47. Criscione CD, Blouin MS (2007) Parasite phylogeographical congruence with salmon host evolutionarily significant units: implications for salmon conservation. Molecular Ecology 16:993–1005CrossRefGoogle Scholar
  48. Criscione CD, Poulin R, Blouin MS (2005) Molecular ecology of parasites: elucidating ecological and microevolutionary processes. Molecular Ecology 14:2247–2257CrossRefGoogle Scholar
  49. Cross PC, Lloyd-Smith JO, Johnson PLF, Getz WM (2005) Duelling timescales of host movement and disease recovery determine invasion of disease in structured populations. Ecology Letters 8:587–595CrossRefGoogle Scholar
  50. Cui J, Han N, Streicker D, Li G, Tang X, Shi Z, et al. (2007) Evolutionary relationships between bat coronaviruses and their hosts. Emerging Infectious Diseases 13:1526–1532Google Scholar
  51. da Rosa ES, Kotait I, Barbosa TF, Carrieri ML, Brandao PE, Pinheiro AS, et al. (2006) Bat-transmitted human rabies outbreaks, Brazilian Amazon. Emerging Infectious Diseases 12:1197–1202Google Scholar
  52. Davies TJ, Pedersen AB (2008) Phylogeny and geography predict pathogen community similarity in wild primates and humans. Proceedings of the Royal Society of London. Series B: Biological Sciences 275:1695–1701Google Scholar
  53. Davis PL, Holmes EC, Larrous F, Van der Poel WH, Tjornehoj K, Alonso WJ, et al. (2005) Phylogeography, population dynamics, and molecular evolution of European bat lyssaviruses. Journal of Virology 79:10487–10497CrossRefGoogle Scholar
  54. de Roode JC, Yates AJ, Altizer S (2008) Virulence-transmission trade-offs and population divergence in virulence in a naturally occurring butterfly parasite. Proceedings of the National Academy of Sciences of the United States of America 105:7489–7494Google Scholar
  55. Dominguez SR, O’Shea TJ, Oko LM, Holmes KV (2007) Detection of group 1 coronaviruses in bats in North America. Emerging Infectious Diseases 13:1295–1300Google Scholar
  56. Donnelly CA, Woodroffe R, Cox DR, Bourne FJ, Cheeseman CL, Clifton-Hadley RS, et al. (2006) Positive and negative effects of widespread badger culling on tuberculosis in cattle. Nature 439:843–846CrossRefGoogle Scholar
  57. Downs WG, Anderson CR, Spence L, Aitken TH, Greenhall AH (1963) Tacaribe virus, a new agent isolated from Artibeus bats and mosquitoes in Trinidad, West Indies. American Journal of Tropical Medicine and Hygiene 12:640–646Google Scholar
  58. Dragoo JW, Lackey JA, Moore KE, Lessa EP, Cook JA, Yates TL (2006) Phylogeography of the deer mouse (Peromyscus maniculatus) provides a predictive framework for research on hantaviruses. Journal of General Virology 87:1997–2003CrossRefGoogle Scholar
  59. Drexler JF, Corman VM, Gloza-Rausch F, Seebens A, Annan A, Ipsen A, et al. (2009) Henipavirus RNA in African bats. PLoS ONE 4:e6367CrossRefGoogle Scholar
  60. Duncan RP, Forsyth DM, Hone J (2007) Testing the metabolic theory of ecology: allometric scaling exponents in mammals. Ecology 88:324–333CrossRefGoogle Scholar
  61. Enright JB, Sadler WW, Moulton JE, Constantine D (1955) Isolation of rabies virus from an insectivorous bat (Tadarida mexicana) in California. Proceedings of the Society for Experimental Biology and Medicine 89:94–96Google Scholar
  62. Epstein JH, Olival KJ, Pulliam JRC, Smith CS, Westrum J, Hughes T, et al. (2009) Management of Pteropus vampyrus, a hunted migratory species with a multinational home-range. Journal of Applied Ecology 46:991–1002CrossRefGoogle Scholar
  63. Ewald PW (1991) Waterborne transmission and the evolution of virulence among gastrointestinal bacteria. Epidemiology and Infection 106:83–119CrossRefGoogle Scholar
  64. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes—application to human mitochondrial DNA restriction data. Genetics 131:479–491Google Scholar
  65. Ezenwa VO (2004) Host social behavior and parasitic infection: a multifactorial approach. Behavioral Ecology 15:446–454CrossRefGoogle Scholar
  66. Favi M, de Mattos CA, Yung V, Chala E, Lopez LR, de Mattos CC (2002) First case of human rabies in Chile caused by an insectivorous bat virus variant. Emerging Infectious Diseases 8:79–81CrossRefGoogle Scholar
  67. Felsenstein J (1985) Phylogenies and the comparative method. American Naturalist 125:1–15CrossRefGoogle Scholar
  68. Fleming TH, Eby P (2003) Ecology of bat migration. In: Bat Ecology, Kunz TH, Fenton B (editors), Chicago: The University of Chicago Press, pp 156–208Google Scholar
  69. Fooks AR, McElhinney LM, Pounder DJ, Finnegan CJ, Mansfield K, Johnson N, et al. (2003) Case report: isolation of a European bat lyssavirus type 2a from a fatal human case of rabies encephalitis. Journal of Medical Virology 71:281–289CrossRefGoogle Scholar
  70. Franka R, Constantine DG, Kuzmin I, Velasco-Villa A, Reeder SA, Streicker D, et al. (2006) A new phylogenetic lineage of rabies virus associated with western pipistrelle bats (Pipistrellus hesperus). Journal of General Virology 87:2309–2321CrossRefGoogle Scholar
  71. Fraser GC, Hooper PT, Lunt RA, Gould AR, Gleeson LJ, Hyatt AD, et al. (1996) Encephalitis caused by a lyssavirus in fruit bats in Australia. Emerging Infectious Diseases 2:327–331CrossRefGoogle Scholar
  72. Freckleton RP, Harvey PH, Pagel M (2002) Phylogenetic analysis and comparative data: a test and review of evidence. American Naturalist 160:712–726CrossRefGoogle Scholar
  73. Gard GP, Marshall ID (1973) Nelson Bay virus. A novel reovirus. Archiv Für Die Gesamte Virusforschung 43:34–42CrossRefGoogle Scholar
  74. Garland T, Ives AR (2000) Using the past to predict the present: confidence intervals for regression equations in phylogenetic comparative methods. American Naturalist 155:346–364CrossRefGoogle Scholar
  75. Gaunt MW, Sall AA, de Lamballerie X, Falconar AKI, Dzhivanian TI, Gould EA (2001) Phylogenetic relationships of flaviviruses correlate with their epidemiology, disease association and biogeography. Journal of General Virology 82:1867–1876Google Scholar
  76. Gloza-Rausch F, Ipsen A, Seebens A, Gottsche M, Panning M, Felix Drexler J, et al. (2008) Detection and prevalence patterns of group I coronaviruses in bats, northern Germany. Emerging Infectious Diseases 14:626–631CrossRefGoogle Scholar
  77. Grafen A (1989) The phylogenetic regression. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 326:119–157CrossRefGoogle Scholar
  78. Gregory RD (1990) Parasites and host geographic range as illustrated by waterfowl. Functional Ecology 4:645–654CrossRefGoogle Scholar
  79. Grenfell BT, Pybus OG, Gog JR, Wood JLN, Daly JM, Mumford JA, et al. (2004) Unifying the epidemiological and evolutionary dynamics of pathogens. Science 303:327–332CrossRefGoogle Scholar
  80. Halpin K, Hyatt AD, Plowright RK, Epstein JH, Daszak P, Field HE, et al. (2007) Emerging viruses: coming in on a wrinkled wing and a prayer. Clinical Infectious Diseases 44:711–717CrossRefGoogle Scholar
  81. Halpin K, Young P, Field H (1996) Identification of likely natural hosts for equine morbillivirus. Communicable Diseases Intelligence 20:476Google Scholar
  82. Halpin K, Young PL, Field HE, Mackenzie JS (2000) Isolation of Hendra virus from pteropid bats: a natural reservoir of Hendra virus. Journal of General Virology 81:1927–1932Google Scholar
  83. Hanlon CA, Kuzmin IV, Blanton JD, Weldon WC, Manangan JS, Rupprecht CE (2005) Efficacy of rabies biologics against new lyssaviruses from Eurasia. Virus Research 111:44–54CrossRefGoogle Scholar
  84. Haraguchi Y, Sasaki A (2000) The evolution of parasite virulence and transmission rate in a spatially structured population. Journal of Theoretical Biology 203:85–96CrossRefGoogle Scholar
  85. Harvey PH, Pagel MD (1991) The Comparative Method in Evolutionary Biology, Oxford, UK: Oxford University PressGoogle Scholar
  86. Hayman DT, Suu-Ire R, Breed AC, McEachern JA, Wang L, Wood JL, et al. (2008) Evidence of henipavirus infection in West African fruit bats. PLoS ONE 3:e2739CrossRefGoogle Scholar
  87. Heaney LR, Walsh JS, Peterson AT (2005) The roles of geological history and colonization abilities in genetic differentiation between mammalian populations in the Philippine archipelago. Journal of Biogeography 32:229–247CrossRefGoogle Scholar
  88. Herre EA (1993) Population-structure and the evolution of virulence in nematode parasites of fig wasps. Science 259:1442–1445CrossRefGoogle Scholar
  89. Hess G (1996) Disease in metapopulation models: implications for conservation. Ecology 77:1617–1632CrossRefGoogle Scholar
  90. Hess GR, Randolph SE, Arneberg P, Chemini C, Furlanello C, Harwood J, et al. (2004) Spatial aspects of disease dynamics. In: The Ecology of Wildlife Diseases, Hudson PJ, Rizzoli A, Grenfell B, Heesterbeek JAP, Dobson A (editors), Oxford, UK: Oxford University Press, pp 102–118Google Scholar
  91. Hisheh S, How RA, Suyanto A, Schmitt LH (2004) Implications of contrasting patterns of genetic variability in two vespertilionid bats from the Indonesian archipelago. Biological Journal of the Linnean Society 83:421–431CrossRefGoogle Scholar
  92. Holmes EC, Drummond AJ (2007) The evolutionary genetics of viral emergence. Current Topics in Microbiology and Immunology 315:51–66CrossRefGoogle Scholar
  93. Hughes GJ, Orciari LA, Rupprecht CE (2005) Evolutionary timescale of rabies virus adaptation to North American bats inferred from the substitution rate of the nucleoprotein gene. Journal of General Virology 86:1467–1474CrossRefGoogle Scholar
  94. Hutson AM (2004) Occurrence, distribution and incidence of lyssavirus in bats. Scottish Natural Heritage Commissioned Report No. 063Google Scholar
  95. IUCN (2009) IUCN Red List of Threatened Species. Available: [accessed March 1, 2009]
  96. Iwasaki T, Inoue S, Tanaka K, Sato Y, Morikawa S, Hayasaka D, et al. (2004) Characterization of Oita virus 296/1972 of Rhabdoviridae isolated from a horseshoe bat bearing characteristics of both lyssavirus and vesiculovirus. Archives of Virology 149:1139–1154CrossRefGoogle Scholar
  97. Johara MY, Field H, Rashdi AM, Morrissy C, Heide Bvd, Rosta P, et al. (2001) Nipah virus infection in bats (Order Chiroptera) in Peninsular Malaysia. Emerging Infectious Diseases 7:439–441Google Scholar
  98. Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, et al. (2008) Global trends in emerging infectious diseases. Nature 451:990–993CrossRefGoogle Scholar
  99. Jones KE, Purvis A, Gittleman JL (2003) Biological correlates of extinction risk in bats. American Naturalist 161:601–614CrossRefGoogle Scholar
  100. Juste J, Ibanez C, Machordom A (2000) Morphological and allozyme variation of Eidolon helvum (Mammalia: Megachiroptera) in the islands of the Gulf of Guinea. Biological Journal of the Linnean Society 71:359–378CrossRefGoogle Scholar
  101. Juste JB, Machordom A, Ibanez C (1996) Allozyme variation of the Egyptian rousette (Rousettus aegyptiacus) in the Gulf of Guinea. Biochemical Systematics and Ecology 24:499–508CrossRefGoogle Scholar
  102. Kalunda M, Mukwaya LG, Mukuye A, Lule M, Sekyalo E, Wright J, et al. (1986) Kasokero virus: a new human pathogen from bats (Rousettus aegyptiacus) in Uganda. American Journal of Tropical Medicine and Hygiene 35:387–392Google Scholar
  103. Kelkar SD, Kadam SS, Banerjee K (1981) Haemagglutination inhibition antibodies against influenza virus in bats. Indian Journal of Medical Research 74:147–152Google Scholar
  104. Kemp GE, Le Gonidec G, Karabatsos N, Rickenbach A, Cropp CB (1988) Ife: a new African orbivirus isolated from Eidolon helvum bats captured in Nigeria, Cameroon and the Central African Republic. Bulletin de la Société de Pathologie Exotique et de Ses Filiales 81:40–48Google Scholar
  105. Kerr B, Neuhauser C, Bohannan BJM, Dean AM (2006) Local migration promotes competitive restraint in a host-pathogen ‘tragedy of the commons.’ Nature 442:75–78CrossRefGoogle Scholar
  106. Kim GR, Lee YT, Park CH (1994) A new natural reservoir of hantavirus: isolation of hantaviruses from lung tissues of bats. Archives of Virology 134:85–95CrossRefGoogle Scholar
  107. Konstantinov OK, Diallo M, Inapogui A, Bah A, Camara S (2006) The mammals of guinea as reservoirs and carriers of arboviruses. Meditsinskaia Parazitologiia i Parazitarnye Bolezni 1:34–39Google Scholar
  108. Kunz TH (1982) Roosting ecology of bats. In: Ecology of Bats, Kunz TH (editor), New York: Plenum Publishing, pp 1–55Google Scholar
  109. Kuzmin IV, Niezgoda M, Franka R, Agwanda B, Markotter W, Beagley JC, et al. (2008) Lagos bat virus in Kenya. Journal of Clinical Microbiology 46:1451–1461CrossRefGoogle Scholar
  110. L’vov DK, Easterday B, Hinshow W, Dandurov IV, Arkhipov PN (1979) Isolation of strains of the Hong Kong complex (H3N2) influenza virus from Nyctalus noctula bats in Kazakhstan. Voprosy Virusologii 4:338–341Google Scholar
  111. L’vov DK, Karas FR, Timofeev EM, Tsyrkin YM, Vargina SG, Veselovskaya OV, et al. (1973) Issyk-Kul virus, a new arbovirus isolated from bats and Argas (Carios) Vespertilionis (Latr., 1802) in Kirghiz S.S.R. Archiv Für Die Gesamte Virusforschung 42:207–209CrossRefGoogle Scholar
  112. Leroy EM, Kumulungui B, Pourrut X, Rouquet P, Hassanin A, Yaba P, et al. (2005) Fruit bats as reservoirs of Ebola virus. Nature 438:575–576CrossRefGoogle Scholar
  113. Li WD, Shi ZL, Yu M, Ren WZ, Smith C, Epstein JH, et al. (2005) Bats are natural reservoirs of SARS-like coronaviruses. Science 310:676–679CrossRefGoogle Scholar
  114. Liu WM, Worobey M, Li YY, Keele BF, Bibollet-Ruche F, Guo YY, et al. (2008) Molecular ecology and natural history of simian foamy virus infection in wild-living chimpanzees. PLoS Pathogens 4:e1000097CrossRefGoogle Scholar
  115. Lloyd-Smith JO, Schreiber SJ, Kopp PE, Getz WM (2005) Superspreading and the effect of individual variation on disease emergence. Nature 438:355–359CrossRefGoogle Scholar
  116. Lumio J, Hillbom M, Roine R, Ketonen L, Haltia M, Valle M, et al. (1986) Human rabies of bat origin in Europe. Lancet 1:378CrossRefGoogle Scholar
  117. Lumlertdacha B, Boongird K, Wanghongsa S, Wacharapluesadee S, Chanhome L, Khawplod P, et al. (2005) Survey for bat lyssaviruses, Thailand. Emerging Infectious Diseases 11:232–236Google Scholar
  118. Lyles AM, Dobson AP (1993) Infectious disease and intensive management: population dynamics, threatened hosts, and their parasites. Journal of Zoo and Wildlife Medicine 24:315–326Google Scholar
  119. Maharadatunkamsi, Hisheh S, Kitchener DJ, Schmitt LH (2003) Relationships between morphology, genetics, and geography in the cave fruit bat Eonycteris spelaea (Dobson, 1871) from Indonesia. Biological Journal of the Linnean Society 79:511–522Google Scholar
  120. Markotter W, Van Eeden C, Kuzmin IV, Rupprecht CE, Paweska JT, Swanepoel R, et al. (2008) Epidemiology and pathogenicity of African bat lyssaviruses. Developments in Biologicals 131:317–325Google Scholar
  121. Martins EP, Hansen TF (1997) Phylogenies and the comparative method: a general approach to incorporating phylogenetic information into the analysis of interspecific data. American Naturalist 149:646–667CrossRefGoogle Scholar
  122. Martins FM, Ditchfield AD, Meyer D, Morgante JS (2007) Mitochondrial DNA phylogeography reveals marked population structure in the common vampire bat, Desmodus rotundus (Phyllostomidae). Journal of Zoological Systematics and Evolutionary Research 45:372–378CrossRefGoogle Scholar
  123. May RM (2006) Network structure and the biology of populations. Trends in Ecology and Evolution 21:394–399CrossRefGoogle Scholar
  124. May RM, Anderson RM (1979) Population biology of infectious diseases: part II. Nature 280:455–461CrossRefGoogle Scholar
  125. McCracken GF (1987) Genetic structure of bat social groups. In: Recent Advances in the Study of Bats, Fenton B, Racey PA, Rayner JMV (editors), Cambridge, UK: Cambridge University Press, pp 281–298Google Scholar
  126. McCracken GF (2003) Estimates of population sizes in summer colonies of Brazilian free-tailed bats (Tadarida brasiliensis). USGS/BRD/ITR-2003-003, U.S. Geological SurveyGoogle Scholar
  127. McCracken GF, Bradbury JW (1981) Social organization and kinship in the polygynous bat Phyllostomus hastatus. Behavioral Ecology and Sociobiology 8:11–34CrossRefGoogle Scholar
  128. McCracken GF, Gassel MF (1997) Genetic structure in migratory and nonmigratory populations of Brazilian free-tailed bats. Journal of Mammalogy 78:348–357CrossRefGoogle Scholar
  129. McKnight CA, Wise AG, Maes RK, Howe C, Rector A, Van Ranst M, et al. (2006) Papillomavirus-associated basosquamous carcinoma in an Egyptian fruit bat (Rousettus aegyptiacus). Journal of Zoo and Wildlife Medicine 37:193–196CrossRefGoogle Scholar
  130. Messenger SL, Molineux IJ, Bull JJ (1999) Virulence evolution in a virus obeys a trade-off. Proceedings of the Royal Society of London. Series B: Biological Sciences 266:397–404Google Scholar
  131. Messenger SL, Smith JS, Rupprecht CE (2002) Emerging epidemiology of bat-associated cryptic cases of rabies in humans in the United States. Clinical Infectious Diseases 35:738–747CrossRefGoogle Scholar
  132. Messenger S, Rupprecht C, Smith J (2003a) Bats, emerging virus infections, and the rabies paradigm. In: Bat Ecology, Kunz TH, Fenton MB (editors), Chicago: The University of Chicago Press, pp 622–679Google Scholar
  133. Messenger SL, Smith JS, Orciari LA, Yager PA, Rupprecht CE (2003b) Emerging pattern of rabies deaths and increased viral infectivity. Emerging Infectious Diseases 9:151–154Google Scholar
  134. Meyer CF, Kalko EK, Kerth G (2009) Small-scale fragmentation effects on local genetic diversity in two phyllostomid bats with different dispersal abilities in Panama. Biotropica 41:95–102CrossRefGoogle Scholar
  135. Miller-Butterworth C, Jacobs D, Harley E (2003) Strong population substructure is correlated with morphology and ecology in a migratory bat. Nature 424:187–191CrossRefGoogle Scholar
  136. Morse SS (1993) Emerging Viruses, New York: Oxford University PressGoogle Scholar
  137. Muller MA, Paweska JT, Leman PA, Drosten C, Grywna K, Kemp A, et al. (2007) Coronavirus antibodies in African bat species. Emerging Infectious Diseases 13:1367–1370Google Scholar
  138. Muller T, Cox J, Peter W, Schafer R, Johnson N, McElhinney LM, et al. (2004) Spill-over of European bat lyssavirus type 1 into a stone marten (Martes foina) in Germany. Journal of Veterinary Medicine, B: Infectious Diseases and Veterinary Public Health 51:49–54Google Scholar
  139. Ngamprasertwong T, Mackie IJ, Racey PA, Piertney SB (2008) Spatial distribution of mitochondrial and microsatellite DNA variation in Daubenton’s bat within Scotland. Molecular Ecology 17:3243–3258CrossRefGoogle Scholar
  140. Nieberding C, Morand S, Libois R, Michaux JR (2004) A parasite reveals cryptic phylogeographic history of its host. Proceedings of the Royal Society of London. Series B: Biological Sciences 271:2559–2568Google Scholar
  141. Norberg UM, Rayner JMV (1987) Ecological morphology and flight in bats (Mammalia, Chiroptera)—wing adaptations, flight performance, foraging strategy and echolocation. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 316:337–419CrossRefGoogle Scholar
  142. Nowak RM (1999) Walker’s Mammals of the World, 6th ed., Baltimore: Johns Hopkins University PressGoogle Scholar
  143. Nunn CL, Altizer S, Jones KE, Sechrest W (2003) Comparative tests of parasite species richness in primates. American Naturalist 162:597–614CrossRefGoogle Scholar
  144. Nunn CL, Altizer S, Sechrest W, Jones KE, Barton RA, Gittleman JL (2004) Parasites and the evolutionary diversification of primate clades. American Naturalist 164(Suppl 5):S90–S103Google Scholar
  145. Nunn CL, Altizer SM, Sechrest W, Cunningham AA (2005) Latitudinal gradients of parasite species richness in primates. Diversity and Distributions 11:249–256CrossRefGoogle Scholar
  146. O’Shea TJ, Bogan MA (2003) Monitoring trends in bat populations of the United States and territories: problems and prospects. USGS/BRD/ITR-2003-003, U.S. Geological SurveyGoogle Scholar
  147. Olival KJ (2008) Population genetic structure and phylogeography of Southeast Asian flying foxes: implications for conservation and disease ecology. Thesis. Columbia University, New YorkGoogle Scholar
  148. Ortega J, Maldonado JE, Wilkinson GS, Arita HT, Fleischer RC (2003) Male dominance, paternity, and relatedness in the Jamaican fruit-eating bat (Artibeus jamaicensis). Molecular Ecology 12:2409–2415CrossRefGoogle Scholar
  149. Pagel M (1999) Inferring the historical patterns of biological evolution. Nature 401:877–884CrossRefGoogle Scholar
  150. Pannell JR, Charlesworth B (2000) Effects of metapopulation processes on measures of genetic diversity. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 355:1851–1864CrossRefGoogle Scholar
  151. Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290CrossRefGoogle Scholar
  152. Park AW, Gubbins S, Gilligan CA (2002) Extinction times for closed epidemics: the effects of host spatial structure. Ecology Letters 5:747–755CrossRefGoogle Scholar
  153. Pavri KM, Singh KR (1968) Kyasanur forest disease virus infection in the frugivorous bat, Cynopterus sphinx. Indian Journal of Medical Research 56:1202–1204Google Scholar
  154. Peterson AT, Heaney LR (1993) Genetic differentiation in Philippine bats of the genera Cynopterus and Haplonycteris. Biological Journal of the Linnean Society 49:203–218CrossRefGoogle Scholar
  155. Petit E, Mayer F (1999) Male dispersal in the noctule bat (Nyctalus noctula): where are the limits? Proceedings of the Royal Society of London. Series B: Biological Sciences 266:1717–1722Google Scholar
  156. Philbey AW, Kirkland PD, Ross AD, Davis RJ, Gleeson AB, Love RJ, et al. (1998) An apparently new virus (family Paramyxoviridae) infectious for pigs, humans, and fruit bats. Emerging Infectious Diseases 4:269–271CrossRefGoogle Scholar
  157. Piaggio AJ, Perkins SL (2005) Molecular phylogeny of North American long-eared bats (Vespertilionidae: Corynorhinus); inter- and intraspecific relationships inferred from mitochondrial and nuclear DNA sequences. Molecular Phylogenetics and Evolution 37:762–775CrossRefGoogle Scholar
  158. Plowright RK, Field HE, Smith C, Divljan A, Palmer C, Tabor G, et al. (2008) Reproduction and nutritional stress are risk factors for Hendra virus infection in little red flying foxes (Pteropus scapulatus). Proceedings of the Royal Society of London. Series B: Biological Sciences 275:861–869Google Scholar
  159. Poon LL, Chu DK, Chan KH, Wong OK, Ellis TM, Leung YH, et al. (2005) Identification of a novel coronavirus in bats. Journal of Virology 79:2001–2009CrossRefGoogle Scholar
  160. Power AG, Mitchell CE (2004) Pathogen spillover in disease epidemics. American Naturalist 164:S79–S89CrossRefGoogle Scholar
  161. Price JL, Everard CO (1977) Rabies virus and antibody in bats in Grenada and Trinidad. Journal of Wildlife Diseases 13:131–134Google Scholar
  162. Pritchard LI, Chua KB, Cummins D, Hyatt A, Crameri G, Eaton BT, et al. (2006) Pulau virus; a new member of the Nelson Bay orthoreovirus species isolated from fruit bats in Malaysia. Archives of Virology 151:229–239CrossRefGoogle Scholar
  163. Pulliam JR, Dushoff J (2009) Ability to replicate in the cytoplasm predicts zoonotic transmission of livestock viruses. Journal of Infectious Diseases 199:565–568CrossRefGoogle Scholar
  164. Pulliam JRC (2008) Viral host jumps: moving toward a predictive framework. EcoHealth 5:80–91CrossRefGoogle Scholar
  165. Pybus OG, Rambaut A, Harvey PH (2000) An integrated framework for the inference of viral population history from reconstructed genealogies. Genetics 155:1429–1437Google Scholar
  166. Racey PA, Barratt EM, Burland TM, Deaville R, Gotelli D, Jones G, et al. (2007) Microsatellite DNA polymorphism confirms reproductive isolation and reveals differences in population genetic structure of cryptic pipistrelle bat species. Biological Journal of the Linnean Society 90:539–550CrossRefGoogle Scholar
  167. Rand DA, Keeling M, Wilson HB (1995) Invasion, stability and evolution to criticality in spatially extended, artificial host-pathogen ecologies. Proceedings of the Royal Society of London. Series B: Biological Sciences 259:55–63Google Scholar
  168. Razafindratsimandresy R, Jeanmaire EM, Counor D, Vasconcelos PF, Sall AA, Reynes JM (2009) Partial molecular characterization of alphaherpesviruses isolated from tropical bats. Journal of General Virology 90:44–47CrossRefGoogle Scholar
  169. Real LA, Biek R (2007) Spatial dynamics and genetics of infectious diseases on heterogeneous landscapes. Journal of the Royal Society Interface 4:935–948CrossRefGoogle Scholar
  170. Rector A, Mostmans S, Van Doorslaer K, McKnight CA, Maes RK, Wise AG, et al. (2006) Genetic characterization of the first chiropteran papillomavirus, isolated from a basosquamous carcinoma in an Egyptian fruit bat: the Rousettus aegyptiacus papillomavirus type 1. Veterinary Microbiology 117:267–275CrossRefGoogle Scholar
  171. Reynes JM, Molia S, Audry L, Hout S, Ngin S, Walston J, et al. (2004) Serologic evidence of lyssavirus infection in bats, Cambodia. Emerging Infectious Diseases 10:2231–2234Google Scholar
  172. Richter HV, Cumming GS (2006) Food availability and annual migration of the straw-colored fruit bat (Eidolon helvum). Journal of Zoology 268:35–44Google Scholar
  173. Riley SPD, Foley J, Chomel B (2004) Exposure to feline and canine pathogens in bobcats and gray foxes in urban and rural zones of a National Park in California. Journal of Wildlife Diseases 40:11–22Google Scholar
  174. Rivers NM, Butlin RK, Altringham JD (2005) Genetic population structure of Natterer’s bats explained by mating at swarming sites and philopatry. Molecular Ecology 14:4299–4312CrossRefGoogle Scholar
  175. Rodriguez DJ, Torres-Sorando L (2001) Models of infectious diseases in spatially heterogeneous environments. Bulletin of Mathematical Biology 63:547–571CrossRefGoogle Scholar
  176. Rossiter SJ, Jones G, Ransome RD, Barratt EM (2000) Genetic variation and population structure in the endangered greater horseshoe bat Rhinolophus ferrumequinum. Molecular Ecology 9:1131–1135CrossRefGoogle Scholar
  177. Ruedi M, Castella V (2003) Genetic consequences of the ice ages on nurseries of the bat Myotis myotis: a mitochondrial and nuclear survey. Molecular Ecology 12:1527–1540CrossRefGoogle Scholar
  178. Ruedi M, Walter S, Fischer MC, Scaravelli D, Excoffier L, Heckel G (2008) Italy as a major Ice Age refuge area for the bat Myotis myotis (Chiroptera: Vespertilionidae) in Europe. Molecular Ecology 17:1801–1814CrossRefGoogle Scholar
  179. Russell AL, Medellin RA, McCracken GF (2005) Genetic variation and migration in the Mexican free-tailed bat (Tadarida brasiliensis mexicana). Molecular Ecology 14:2207–2222CrossRefGoogle Scholar
  180. Safi K, Konig B, Kerth G (2007) Sex differences in population genetics, home range size and habitat use of the parti-colored bat (Vespertilio murinus, Linnaeus 1758) in Switzerland and their consequences for conservation. Biological Conservation 137:28–36CrossRefGoogle Scholar
  181. Salaun JJ, Klein JM, Hebrard G (1974) A new virus, Phnom-Penh bat virus, isolated in Cambodia from a short-nosed fruit bat, Cynopterus brachyotis angulatus Miller, 1898. Annales de Microbiologie 125:485–495Google Scholar
  182. Serra-Cobo J, Amengual B, Abellan C, Bourhy H (2002) European bat lyssavirus infection in Spanish bat populations. Emerging Infectious Diseases 8:413–420CrossRefGoogle Scholar
  183. Seymour C, Dickerman RW, Martin MS (1978) Venezuelan encephalitis virus infection in neotropical bats. I. Natural infection in a Guatemalan enzootic focus. American Journal of Tropical Medicine and Hygiene 27:290–296Google Scholar
  184. Shi ZL, Hu ZH (2008) A review of studies on animal reservoirs of the SARS coronavirus. Virus Research 133:74–87CrossRefGoogle Scholar
  185. Sinclair EA, Webb NJ, Marchant AD, Tidemann CR (1996) Genetic variation in the little red flying-fox Pteropus scapulatus (Chiroptera: Pteropodidae): implications for management. Biological Conservation 76:45–50CrossRefGoogle Scholar
  186. Smith JS (1996) New aspects of rabies with emphasis on epidemiology, diagnosis, and prevention of the disease in the United States. Clinical Microbiology Reviews 9:166–176Google Scholar
  187. Speare R, Skerratt L, Foster R, Berger L, Hooper P, Lunt R, et al. (1997) Australian bat lyssavirus infection in three fruit bats from north Queensland. Communicable Diseases Intelligence 21:117–120Google Scholar
  188. Storz JF, Bhat HR, Kunz TH (2001) Genetic consequences of polygyny and social structure in an Indian fruit bat, Cynopterus sphinx. I. Inbreeding, outbreeding, and population subdivision. Evolution 55:1215–1223Google Scholar
  189. Sulkin SE, Allen R, Miura T, Toyokawa K (1970) Studies of arthropod-borne virus infections in chiroptera. VI. Isolation of Japanese B encephalitis virus from naturally infected bats. American Journal of Tropical Medicine and Hygiene 19:77–87Google Scholar
  190. Sulkin SE, Sims RA, Allen R (1966) Isolation of St. Louis encephalitis virus from bats (Tadarida b. mexicana) in Texas. Science 152:223–225CrossRefGoogle Scholar
  191. Swanepoel R, Smit SB, Rollin PE, Formenty P, Leman PA, Kemp A, et al. (2007) Studies of reservoir hosts for Marburg virus. Emerging Infectious Diseases 13:1847–1851Google Scholar
  192. Taylor LH, Latham SM, Woolhouse MEJ (2001) Risk factors for human disease emergence. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 356:983–989CrossRefGoogle Scholar
  193. Tong S, Conrardy C, Ruone S, Kuzmin IV, Guo X, Tao Y, et al. (2009) Detection of novel SARS-like and other coronaviruses in bats from Kenya. Emerging Infectious Diseases 15:482–485CrossRefGoogle Scholar
  194. Towner JS, Pourrut X, Albarino CG, Nkogue CN, Bird BH, Grard G, et al. (2007) Marburg virus infection detected in a common African bat. PLoS ONE 2:e764CrossRefGoogle Scholar
  195. Trimarchi C, Debbie JG (1977) Naturally occurring rabies virus and neutralizing antibody in two species of insectivorous bats of New York State. Journal of Wildlife Diseases 13:366–369Google Scholar
  196. Turmelle AS (2002) Phylogeography and population structure of the big brown bat (Eptesicus fuscus). Thesis. Boston University, BostonGoogle Scholar
  197. van Thiel PP, van den Hoek JA, Eftimov F, Tepaske R, Zaaijer HJ, Spanjaard L, et al. (2008) Fatal case of human rabies (Duvenhage virus) from a bat in Kenya: The Netherlands, December 2007. European Communicable Disease Bulletin 13:1–2Google Scholar
  198. Velasco-Villa A, Orciari LA, Juarez-Islas V, Gomez-Sierra M, Padilla-Medina I, Flisser A, et al. (2006) Molecular diversity of rabies viruses associated with bats in Mexico and other countries of the Americas. Journal of Clinical Microbiology 44:1697–1710CrossRefGoogle Scholar
  199. Warner CK, Zaki SR, Shieh WJ, Whitfield SG, Smith JS, Orciari LA, et al. (1999) Laboratory investigation of human deaths from vampire bat rabies in Peru. American Journal of Tropical Medicine and Hygiene 60:502–507Google Scholar
  200. Webb NJ, Tidemann CR (1996) Mobility of Australian flying-foxes, Pteropus spp. (Megachiroptera): evidence from genetic variation. Proceedings of the Royal Society of London. Series B: Biological Sciences 263:497–502Google Scholar
  201. Webb SD, Keeling MJ, Boots M (2007) Host-parasite interactions between the local and the mean-field: how and when does spatial population structure matter? Journal of Theoretical Biology 249:140–152CrossRefGoogle Scholar
  202. Wellenberg GJ, Audry L, Ronsholt L, van der Poel WH, Bruschke CJ, Bourhy H (2002) Presence of European bat lyssavirus RNAs in apparently healthy Rousettus aegyptiacus bats. Archives of Virology 147:349–361CrossRefGoogle Scholar
  203. Weyandt SE, Van Den Bussche RA (2007) Phylogeographic structuring and volant mammals: the case of the pallid bat (Antrozous pallidus). Journal of Biogeography 34:1233–1245CrossRefGoogle Scholar
  204. Whitby JE, Heaton PR, Black EM, Wooldridge M, McElhinney LM, Johnstone P (2000) First isolation of a rabies-related virus from a Daubenton’s bat in the United Kingdom. Veterinary Record 147:385–388Google Scholar
  205. Wibbelt G, Kurth A, Yasmum N, Bannert M, Nagel S, Nitsche A, et al. (2007) Discovery of herpesviruses in bats. Journal of General Virology 88:2651–2655CrossRefGoogle Scholar
  206. Wilkinson GS (1985) The social organization of the common vampire bat. 2. Mating system, genetic structure, and relatedness. Behavioral Ecology and Sociobiology 17:123–134Google Scholar
  207. Wolfe ND, Daszak P, Kilpatrick AM, Burke DS (2005) Bushmeat hunting, deforestation, and prediction of zoonotic disease. Emerging Infectious Disease 11:1822–1827Google Scholar
  208. Wolfe ND, Dunavan CP, Diamond J (2007) Origins of major human infectious diseases. Nature 447:279–283CrossRefGoogle Scholar
  209. Wong S, Lau S, Woo P, Yuen KY (2007) Bats as a continuing source of emerging infections in humans. Reviews in Medical Virology 17:67–91CrossRefGoogle Scholar
  210. Woolhouse MEJ, Gowtage-Sequeria S (2005) Host range and emerging and reemerging pathogens. Emerging Infectious Diseases 11:1842–1847Google Scholar
  211. Woolhouse MEJ, Howey R, Gaunt E, Reilly L, Chase-Topping M, Savill N (2008) Temporal trends in the discovery of human viruses. Proceedings of the Royal Society of London. Series B: Biological Sciences 275:2111–2115Google Scholar
  212. Wright S (1951) The genetical structure of populations. Annals of Eugenics 15:323–354Google Scholar
  213. Yoshino H, Armstrong KN, Izawa M, Yokoyama J, Kawata M (2008) Genetic and acoustic population structuring in the Okinawa least horseshoe bat: are intercolony acoustic differences maintained by vertical maternal transmission? Molecular Ecology 17:4978–4991CrossRefGoogle Scholar

Copyright information

© International Association for Ecology and Health 2010

Authors and Affiliations

  1. 1.Department of Ecology and Evolutionary BiologyUniversity of TennesseeKnoxvilleUSA
  2. 2.Sackler Institute for Comparative Genomics, American Museum of Natural HistoryNew YorkUSA
  3. 3.Division of Viral and Rickettsial DiseasesCenters for Disease Control and PreventionAtlantaUSA
  4. 4.Wildlife TrustNew YorkUSA

Personalised recommendations