EcoHealth

, 6:27 | Cite as

Fatal Chytridiomycosis in the Tyrrhenian Painted Frog

  • Jon Bielby
  • Stefano Bovero
  • Giuseppe Sotgiu
  • Giulia Tessa
  • Marco Favelli
  • Claudio Angelini
  • Stefano Doglio
  • Frances C. Clare
  • Enrico Gazzaniga
  • Federica Lapietra
  • Trenton W. J. Garner
Short Communication

Abstract

Batrachochytrium dendrobatidis (Bd), the causative agent of the amphibian disease chytridiomycosis, is an important factor in the global decline of amphibians. Within Europe, animals that exhibit clinical signs of the disease have only been reported in Spain despite the pathogen’s wide, but patchy, distribution on the continent. Recently, another occurrence of chytridiomycosis was reported in Euproctus platycephalus, the Sardinian brook newt, on the Mediterranean island of Sardinia, but without any evidence of fatal disease. We report further evidence of the emergence of Bd on Sardinia and the first evidence of lethal chytridiomycosis outside of Spain. Unusual mortalities of the Tyrrhenian painted frog (Discoglossus sardus) were found at three sites in the Limbara mountains of northern Sardinia. Molecular and histological screens of corpses, frogs, and tadpoles from these sites revealed infection with Bd. Infection and mortality occurred at locations that are unusual in terms of the published habitat requirements of the pathogen. Given the endemicity, the IUCN Red List status of the amphibian species on Sardinia, and the occurrence of infection and mortality caused by chytridiomycosis, there is serious reason for concern for the impact that disease emergence may have on the conservation of the amphibians of the island.

Keywords

chytridiomycosis Discoglossus sardus Sardinia mortality 

References

  1. Alexander MA, Eischeid JK (2001) Climate variability in regions of amphibian declines. Conservation Biology 15:930-942.CrossRefGoogle Scholar
  2. Bielby J, Cooper N, Cunningham AA, Garner TWJ, Purvis A (2008) Predicting susceptibility to future declines in the world's frogs. Conservation Letters 1:82-90.CrossRefGoogle Scholar
  3. Bosch J, Carrascal LM, Durán L, Walker S, Fisher MC (2006) Climate change and outbreaks of amphibian chytridiomycosis in a montane area of Central Spain: is there a link? Proceedings of the Royal Society of London, Series B 274:253–260Google Scholar
  4. Bosch J, Martínez-Solano I (2006) Chytrid fungus infection related to unusual mortalities of Salamandra salamandra and Bufo bufo in the Peñalara Natural Park, Spain. Oryx 40:84-89.CrossRefGoogle Scholar
  5. Bosch J, Martínez-Solano I, García-Paris M (2001) Evidence of a chytrid fungus infection involved in the decline of the common midwife toad (Alytes obstetricans) in protected areas in central Spain. Biological Conservation 97:331-337.CrossRefGoogle Scholar
  6. Bosch J, Rincón PA (2008) Chytridiomycosis-mediated expansion of Bufo bufo in a montane area of Central Spain: an indirect effect of the disease. Diversity and Distributions 14:637-643.CrossRefGoogle Scholar
  7. Bovero S, Sotgiu G, Angelini C, Doglio S, Gazzaniga E, Cunningham AA et al (2008) Detection of chytridiomycosis caused by Batrachochytrium dendrobatidis in the endangered Sardinian brook newt Euproctus platycephalus in southern Sardinia, Italy. Journal of Wildlife Disease 44:712-715.Google Scholar
  8. Boyle DG, Boyle DB, Olsen V, Morgan JAT, Hyatt AD (2004) Rapid quantitative detection of chytridiomycosis (Batrachochytrium dendrobatidis) in amphibian samples using real-time Taqman PCR assay. Diseases of Aquatic Organisms 60:141-148.CrossRefGoogle Scholar
  9. Colomo S, Ticca F (1984) Sardinien, Bilder einer Insel. Archivio Fotografico Sardo, Nuoro, Italy.Google Scholar
  10. Cooper N, Bielby J, Thomas G, Purvis A (2008) Macroecology and extinction risk correlates of frogs. Global Ecology and Biogeography 17:211-221.CrossRefGoogle Scholar
  11. DiGiacomo RF, Koepsell TD (1986) Sampling for detection of infection or disease in animal populations. Journal of the American Veterinary Medical Association 189:22-23.Google Scholar
  12. Fisher MC, Bosch J, Yin Z, Stead DA, Walker J, Selway L et al (2009) Proteomic and phenotypic profiling of an emerging pathogen of amphibians Batrachochytrium dendrobatidis shows that genotype is linked to virulence. Molecular Ecology 18(3):415–429Google Scholar
  13. Garner TWJ, Walker S, Bosch J, Hyatt AD, Cunningham AA, Fisher MC (2005) Chytrid fungus in Europe. Emerging Infectious Diseases 11:1639-1641.Google Scholar
  14. Hyatt AD, Boyle DG, Olsen V, Boyle DB, Berger L, Obendorf D et al (2007) Diagnostic assays and sampling protocols for the detection of Batrachochytrium dendrobatidis. Diseases of Aquatic Organisms 73:175-192.CrossRefGoogle Scholar
  15. La Marca E, Lips KR, Lötters S, Puschendorf R, Ibáñez R, Rueda-Almonacid JV et al (2005) Catastrophic population declines and extinctions in neotropical harlequin frogs (Bufonidae: Atelopus). Biotropica 37:190-201.CrossRefGoogle Scholar
  16. Laurance WF, McDonald KR, Speare R (1996) Epidemic disease and the catastrophic decline of Australian rain forest frogs. Conservation Biology 10:406-413.CrossRefGoogle Scholar
  17. Lips KR, Diffendorfer J, Mendelson III Jr, Sears MW (2008) Riding the wave: reconciling the roles of disease and climate change in amphibian declines. PLoS Biology 6, e72.CrossRefGoogle Scholar
  18. Pimm SL (1991) The balance of nature? University of Chicago Press, Chicago.Google Scholar
  19. Puddu F, Viarengo M, Erminio C (1988) Euprotto sardo. In: Animali di Sardegna: gli Anfibi e i Rettili. della Torre Ed., Cagliari, 192 ppGoogle Scholar
  20. Schloegel LM, Hero J-M, Berger L, Speare R, McDonald K, Daszak P (2006) The decline of the sharp-snouted day frog (Taudactylus acutirostris): the first documented case of extinction by infection in a free-ranging wildlife species? EcoHealth 3:35-40.CrossRefGoogle Scholar
  21. Simoncelli F, Fagotti A, Dall’Olio R, Vagnetti D, Pascolini R, Di Rosa I (2005) Evidence of Batrachochytrium dendrobatidis infection in water frogs of the Rana esculenta complex in Central Italy. Ecohealth 2:307-312.CrossRefGoogle Scholar
  22. Stagni G, Scoccianti C, Fusini R (2002) Segnalazione di chytridiomicosi in popolazioni di Bombina pachypus (Anura, Bombinatoridae) dell’Appennino toscoemiliano, Abstracts IV Congresso della Societas Herpetologica Italica. Societas Herpetologica Italica, NapoliGoogle Scholar
  23. Walker SF, Salas MB, Jenkins D, Garner TWJ, Cunningham AA, Hyatt AD, Bosch J, Fisher MC (2007) Environmental detection of Batrachochytrium dendrobatidis in a temperate climate. Diseases of Aquatic Organisms 77:105-112.CrossRefGoogle Scholar
  24. Woodhams DC, Alford RA, Briggs CJ, Johnson M, Rollins-Smith LA (2008) Life-history trade-offs influence disease in changing climates: strategies of an amphibian pathogen. Ecology 89:1627-1639.CrossRefGoogle Scholar

Copyright information

© International Association for Ecology and Health 2009

Authors and Affiliations

  • Jon Bielby
    • 1
    • 2
  • Stefano Bovero
    • 3
  • Giuseppe Sotgiu
    • 3
  • Giulia Tessa
    • 3
  • Marco Favelli
    • 3
  • Claudio Angelini
    • 3
  • Stefano Doglio
    • 3
    • 4
  • Frances C. Clare
    • 1
  • Enrico Gazzaniga
    • 3
  • Federica Lapietra
    • 3
  • Trenton W. J. Garner
    • 1
  1. 1.Institute of Zoology, Zoological Society of LondonRegent’s Park, LondonUK
  2. 2.Imperial College LondonAscotUK
  3. 3.”Zirichiltaggi” S. W. C. Non-profit Association for Wildlife ConservationSassariItaly
  4. 4.CESMAP - Prehistoric Study Center and Museum of Prehistoric Art of Pinerolo16 TurinItaly

Personalised recommendations