Skip to main content

Integrated Mercury Monitoring Program for Temperate Estuarine and Marine Ecosystems on the North American Atlantic Coast

Abstract

During the past century, anthropogenic activities have altered the distribution of mercury (Hg) on the earth’s surface. The impacts of such alterations to the natural cycle of Hg can be minimized through coordinated management, policy decisions, and legislative regulations. An ability to quantitatively measure environmental Hg loadings and spatiotemporal trends of their fate in the environment is critical for science-based decision making. Here, we outline a Hg monitoring program for temperate estuarine and marine ecosystems on the Atlantic Coast of North America. This framework follows a similar, previously developed plan for freshwater and terrestrial ecosystems in the U.S. Methylmercury (MeHg) is the toxicologically relevant form of Hg, and its ability to bioaccumulate in organisms and biomagnify in food webs depends on numerous biological and physicochemical factors that affect its production, transport, and fate. Therefore, multiple indicators are needed to fully characterize potential changes of Hg loadings in the environment and MeHg bioaccumulation through the different marine food webs. In addition to a description of how to monitor environmental Hg loads for air, sediment, and water, we outline a species-specific matrix of biotic indicators that include shellfish and other invertebrates, fish, birds and mammals. Such a Hg monitoring template is applicable to coastal areas across the Northern Hemisphere and is transferable to arctic and tropical marine ecosystems. We believe that a comprehensive approach provides an ability to best detect spatiotemporal Hg trends for both human and ecological health, and concurrently identify food webs and species at greatest risk to MeHg toxicity.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2

References

  • Ackerman JT, Eagles-Smith CA, Takekawa JY, Demers SC, Adelsbach TL, Bluso JD, et al. (2007) Mercury concentrations and space use of pre-breeding American avocets and black-necked stilts in San Francisco Bay. Science of the Total Environment 384:452466.

    CAS  Google Scholar 

  • Andersen A, Julshamn K, Ringdal O, Msrkore J (1987) Trace elements intake in the Faroe Islands. II. Intake of mercury and other elements by consumption of pilot whales (Globjcephalus meleanus). Science of the Total Environment 65:6368.

    CAS  Google Scholar 

  • Anderson HA (2008) Eighth International Conference on Mercury as a Global Pollutant (ICMGP): human health and exposure to methylmercury. Environmental Research 107:13.

    CAS  Google Scholar 

  • Ashley J, Horwitz RJ (2000) Assessment of PCBs, Selected Organic Pesticides and Mercury in Fishes from New Jersey: 1998–1999 Monitoring Program. Patrick Center for Environmental Research, The Academy of Natural Sciences, Philadelphia.

    Google Scholar 

  • Baeyens W, Meuleman C, Muhaya B, Leermakers M (1998) Behaviour and speciation of mercury in the Scheldt estuary (water, sediments and benthic organisms). Hydrobiologia 366:63–97.

    Google Scholar 

  • Balcom PH, Fitzgerald WF, Vandal GM, Lamborg CH, Rolfhus KR, Langer CS, et al. (2004) Mercury sources and cycling in the Connecticut River and Long Island Sound. Marine Chemistry 90:5374.

    CAS  Google Scholar 

  • Balcom PH, Hammerschmidt CR, Fitzgerald WF, Lamborg CH, O’Connor JS (2008) Seasonal distributions and cycling of mercury and methylmercury in the waters of New York/New Jersey Harbor estuary. Marine Chemistry 109:1–17.

    CAS  Google Scholar 

  • Bank MS, Chesney E, Shine JP, Maage A, Senn DB (2007a) Mercury bioaccumulation and trophic transfer in sympatric snapper species from the Gulf of Mexico. Ecological Applications 17:2100–2110.

    Google Scholar 

  • Bank MS, Burgess DS, Evers DC, Loftin CF (2007b) Mercury contamination of biota from Acadia National Park, Maine: a review. Establishing paired gauged watersheds at Acadia National Park for long-term research on acidic deposition, nitrogen saturation, forest health, and mercury biogeochemistry (1998–2002), Kahl S (editor). Environmental Monitoring and Assessment 126:105–115.

    CAS  Google Scholar 

  • Benoit JM, Gilmour CC, Mason RP, Riedel GS, Riedel GF (1998) Behavior of mercury in the Patuxent River estuary. Biogeochemistry 40:249265.

    CAS  Google Scholar 

  • Benoit JM, Gilmour CC, Heyes A, Mason RP, Miller CL (2003) Geochemical and biological controls over methylmercury production and degradation in aquatic ecosystems. In: Biogeochemistry of Environmentally Important Trace Elements. ACS Symposium Series, American Chemical Society, pp 262–297.

  • Bloom NS (1992) On the chemical form of mercury in edible fish and marine invertebrate tissue. Canadian Journal of Fisheries and Aquatic Sciences 49:10101017.

    CAS  Google Scholar 

  • Bloom NS, Gill GA, Cappellino S, Dobbs C, McShea L, Driscoll C, et al. (1999) Speciation and cycling of mercury in Lavaca Bay, Texas, sediments. Environmental Science and Technology 33:713.

    CAS  Google Scholar 

  • Booth S, Zeller D (2005) Mercury, food webs, and marine mammals: implications of diet and climate change for human health. Environmental Health Perspectives 113:521–526.

    CAS  Google Scholar 

  • Branco V, Vale C, Canario J, Neves dos Santos M (2007) Mercury and selenium in blue shark (Prionace glauca, L. 1758) and swordfish (Xiphias gladius, L. 1758) from two areas of the Atlantic Ocean. Environmental Pollution 150:373–380.

    CAS  Google Scholar 

  • Braune BM (1987a) Comparison of total mercury levels in relation to diet and molt for nine species of marine birds. Archives of Environmental Contaminants and Toxicology 16:217–224.

    CAS  Google Scholar 

  • Braune BM (1987b) Mercury accumulation in relation to size and age of Atlantic Hering (Clupea harengus harengus) from the Southwestern Bay of Fundy, Canada. Archives of Environmental Contaminants and Toxicology 16:311320.

    CAS  Google Scholar 

  • Braune BM (2007) Temporal trends of organochlorines and mercury in seabird eggs from the Canadian Arctic, 1975–2003. Environmental Pollution 148:599613.

    CAS  Google Scholar 

  • Braune BM, Mallory ML, Gilchrist HG (2006) Elevated mercury levels in a declining population of ivory gulls in the Canadian Arctic. Marine Pollution Bulletin 52:978–982.

    CAS  Google Scholar 

  • Brumbaugh WG (2001) A national pilot study of mercury contamination of aquatic ecosystems along multiple gradients: bioaccumulation in fish. Columbia, MO: U.S. Geological Survey

  • Burger J, Nisbet IC, Gochfeld M (1994) Heavy metal and selenium levels in feathers of known-aged common terns (Sterna hirundo). Archives of Environmental Contaminants and Toxicology 26:351–355.

    CAS  Google Scholar 

  • Burger J, Stern AH, Gochfield M (2005) Mercury in commercial fish: optimizing individual choices to reduce risk. Environmental Health Perspectives 113:266–271.

    CAS  Google Scholar 

  • Burgess NM, Meyer MW (2008) Methylmercury exposure associated with reduced productivity in common loons. Ecotoxicology 17:83–91.

    CAS  Google Scholar 

  • Bustamante P, Garrigue C, Breau L, Caurant F, Dabin W, Greaves J, et al. (2003) Trace elements in two odontocete species (Kogia breviceps and Globicephala macrorhynchus) stranded in New Caledonia (South Pacific). Environmental Pollution 24:263–271.

    Google Scholar 

  • Bustamante P, Lahaye V, Durnez C, Churlaud C, Caurant F (2006) Total and organic Hg concentrations in cephalopods from the north eastern Atlantic waters: influence of geographical origin and feeding ecology. Science of the Total Environment 368:585596.

    CAS  Google Scholar 

  • Butler RG, Buckley DE (2002) Black guillemot (Cepphus grylle). In: The Birds of North America Online, Poole A (editor), Ithaca, NY: Cornell Laboratory of Ornithology.

    Google Scholar 

  • Caldeira K, Wickett ME (2003) Anthropogenic carbon and ocean pH. Nature 425:365.

    CAS  Google Scholar 

  • Chase ME, Jones SH, Hennigar P, Sowles J, Harding GCH, Freeman K, et al. (2001) Gulfwatch: monitoring spatial and temporal patterns of trace metal and organic contaminants in the Gulf of Maine (1991–1997) with the blue mussel, Mytilus edulis L. Marine Pollution Bulletin 42:491–505.

    CAS  Google Scholar 

  • Chen CY, Serrell N, Evers DC, Fleishman BJ, Lambert KF, Weiss J, et al. (2008) Methylmercury in marine ecosystems: from sources to seafood consumers—a work group report. Environmental Health Perspectives. doi:10.1289/ehp.11211

  • Clarkson TW, Magos L (2006) The toxicology of mercury and its chemical compounds. Critical Reviews in Toxicology 36:609–662.

    CAS  Google Scholar 

  • Cohen JB, Rattner BA, Golden NH (2003) Use of retrospective data to assess ecotoxicological monitoring needs for terrestrial vertebrates residing in Atlantic coast estuaries. Ecotoxicology 12:365375.

    CAS  Google Scholar 

  • Compeau G, Bartha R (1985) Sulfate-reducing bacteria: principal methylators of mercury in anoxic estuarine sediment. Applied and Environmental Microbiology 50:498–502.

    CAS  Google Scholar 

  • Conaway CH, Ross JRM, Looker R, Mason RP, Flegal AR (2007) Decadal mercury trends in San Francisco estuary sediments. Environmental Research 105:53–66.

    CAS  Google Scholar 

  • Cossa D, Coquery M, Martin JM, Gobell C (1996) Mercury fluxes at the ocean margins. In: Global and Regional Mercury Cycles: Sources, Fluxes and Mass Balances, Baeyens RE, Vasiliev O (editors), Dordrecht, The Netherlands: Kluwer Academic Publishers, pp 229–248.

    Google Scholar 

  • Cunningham P, Cooter W, Sullivan E (2003) Mercury in Marine Life Database. Washington, DC: U.S. Environmental Protection Agency, Office of Wetlands, Oceans, and Watersheds.

    Google Scholar 

  • Das K, Debacker V, Fillet S, Bouquegneau JM (2003) Heavy metals in marine mammals. In: Toxicology of Marine Mammals, Vos J, Bossart GD, Fournier M, O’Shea T (editors), Boca Raton, FL: CRC Press, pp 135167.

    Google Scholar 

  • Davis JA, May MD, Greenfield BK, Fairey R, Roberts C, Ichikawa G, et al. (2002) Contaminant concentrations in sport fish from San Francisco Bay, 1997. Marine Pollution Bulletin 44:11171129.

    CAS  Google Scholar 

  • del Carmen-Alvarez M, Murphy CA, Rose KA, McCarthy ID, Fuiman LA (2006) Maternal body burdens of methylmercury impair survival skills of offspring in Atlantic croaker (Micropogonias undulates). Aquatic Toxicology 80:329–337.

    Google Scholar 

  • Dietz R, Riget F, Johansen P (1996) Lead, cadmium, mercury and selenium in Greenland marine animals. Science of the Total Environment 186:67–93.

    CAS  Google Scholar 

  • Drevnick PA, Roberts AP, Otter RR, Hammerschmidt CR, Klaper R, Oris J (2008) Mercury toxicity in livers of northern pike (Esox luscius) from Isle Royale, U.S.A. Comparative Biochemistry and Physiology Part C 147:331–338.

    Google Scholar 

  • Driscoll CT, Abbott M, Bullock R, Jansen J, Leonard D, Lindberg S, et al. (2007) Airsheds and watersheds. In: Harris R, Krabbenhoft D, Mason R, Murray MW, Reash R, Saltman T (eds), Ecosystem Response to Mercury Contamination: Indicators of Change. Boca Raton, FL: CRC Press, pp 1346.

    Google Scholar 

  • Elliott JE, Scheuhammer AM, Leighton FA, Pearce PA (1992) Heavy metal and metallothionein concentrations in Atlantic Canadian seabirds. Archives of Environmental Contamination and Toxicology 22:6373.

    CAS  Google Scholar 

  • Environment Canada (2008) Mercury and the Environment: Fish Consumption. Available: http://www.ec.gc.ca/MERCURY/EN/fc.cfm.

  • Estrada JA, Rice AN, Lutcavage ME, Skomal GB (2003) Predicting trophic position in sharks of the north-west Atlantic Ocean using stable isotope analysis. Journal of the Marine Biological Association 83:13471350.

    CAS  Google Scholar 

  • Evers DC, Burgess N, Champoux L, Hoskins B, Major A, Goodale W, et al. (2005) Patterns and interpretation of mercury exposure in freshwater avian communities in northeastern North America. Ecotoxicology 14:193222.

    CAS  Google Scholar 

  • Evers DC, Savoy L, DeSorbo CR, Yates D, HansonW, Taylor KM, et al. (2008) Adverse effects from environmental mercury loads on breeding common loons. Ecotoxicology 17:6981.

    CAS  Google Scholar 

  • Evers DC, Graham RT, Perkins P, Michener R, Divoll T (2009) Mercury concentrations in the goliath grouper of Belize: an anthropogenic stressor of concern. Endangered Species Research. doi:10.3354/esr00158

  • [FAO] Food and Agriculture Organization (2004) The State of World Fisheries and Aquaculture, Rome: Food and Agriculture Organization of the United Nations.

    Google Scholar 

  • Fitzgerald WF, Clarkson TW (1991) Mercury and monomethylmercury: present and future concerns. Environmental Health Perspectives 96:159–166.

    CAS  Google Scholar 

  • Fitzgerald WF, Lamborg CH, Hammerschmidt CR (2007) Marine biogeochemical cycling of mercury. Chemical Reviews 107:641–662.

    CAS  Google Scholar 

  • Fontaine PM, Hammill MO, Barrette C, Kingsley MC (1994) Summer diet of the harbour porpoise (Phocoena phocoena) in the estuary and the northern Gulf of St. Lawrence. Canadian Journal of Fisheries and Aquatic Sciences 51:172178.

    Google Scholar 

  • Frodello JP, Roméo M, Viale D (2000) Distribution of mercury in the organs and tissues of five toothed-whale species of the Mediterranean. Environmental Pollution 108:447452.

    CAS  Google Scholar 

  • Garcia-Hernandez J, Cadena-Cardenas L, Betancourt-Lozano M, Garcia-De-La-Parra LM, Garcia-Rico LG, Marquez-Farias F (2007) Total mercury content found in edible tissues of top predator fish from the Gulf of California, Mexico. Toxicological and Environmental Chemistry 89:507–522.

    CAS  Google Scholar 

  • Gaskin DE, Stonefield KI, Suda P, Frank R (1979) Changes in mercury levels in harbor porpoises from the Bay of Fundy, Canada, and adjacent waters during 1969–1977. Archives of Environmental Contamination and Toxicology 8:733–762.

    CAS  Google Scholar 

  • Gill GA, Fitzgerald WF (1987) Mercury in surface waters of the open ocean. Global Biogeochemical Cycles 1:199–212.

    CAS  Google Scholar 

  • Gilmour CC, Henry EA, Mitchell R (1992) Sulfate stimulation of mercury methylation in fresh-water sediments. Environmental Science and Technology 26:22812287.

    CAS  Google Scholar 

  • Golden NH, Rattner BA (2003) Ranking terrestrial vertebrate species for utility in biomonitoring and vulnerability to environmental contaminants. Reviews of Environmental Contamination and Toxicology 176:67–136.

    Google Scholar 

  • Goodale MW, Evers DC, Mierzykowski SE, Bond AL, Burgess NM, Otorowski CI, et al. (this issue) Marine foraging birds as bioindicators of mercury in the Gulf of Maine. EcoHealth. doi:10.1007/s10393-009-0211-7

  • Gorski PR, Cleckner LB, Hurley JP, Sierszen ME, Armstrong DE (2002) Factors affecting enhanced mercury bioaccumulation in inland lakes of Isle Royale National Park, USA. The Science of the Total Environment 304:327348.

    Google Scholar 

  • Greig RA, Wenzloff D, Shelpuk C (1975) Mercury concentrations in fish, North Atlantic offshore waters—1971. Pesticide Monitoring Journal 9:1520.

    CAS  Google Scholar 

  • Hammerschmidt CR, Fitzgerald WF (2004) Geochemical controls on the production and distribution of methylmercury in near-shore marine sediments. Environmental Science and Technology 38:14871495.

    CAS  Google Scholar 

  • Hammerschmidt CR, Fitzgerald WF (2006a) Bioaccumulation and trophic transfer of methylmercury in Long Island Sound. Archives of Environmental Contamination and Toxicology 51:416424.

    CAS  Google Scholar 

  • Hammerschmidt CR, Fitzgerald WF (2006b) Methylmercury cycling in sediments on the continental shelf of southern New England. Geochimica et Cosmochimica Acta 70:918–930.

    CAS  Google Scholar 

  • Hammerschmidt CR, Fitzgerald WF, Lamborg CH, Balcom PH, Visscher PT (2004) Biogeochemistry of methylmercury in sediments of Long Island Sound. Marine Chemistry 90:3152.

    CAS  Google Scholar 

  • Hammerschmidt CR, Fitzgerald WF, Balcom PH, Visscher PT (2008) Organic matter and sulfide inhibit methylmercury production in sediments of New York/New Jersey Harbor. Marine Chemistry 109:165182.

    CAS  Google Scholar 

  • Hansen CT, Nielsen CO, Dietz R, Hansen MM (1990) Zinc, cadmium, mercury and selenium in minke whales, belugas and narwhals from West Greenland. Polar Biology 10:529539.

    Google Scholar 

  • Harding G, Dalziel J, Vass P (2005) Prevalence and bioaccumulation of methyl mercury in the food web of the Bay of Fundy, Gulf of Maine. In: The Changing Bay of Fundy: Beyond 400 Years, Percy JA, Evans AJ, Wells G, Rolston SJ (editors), Dartmouth, Nova Scotia and Sackville, New Brunswick, Canada: Environment Canada—Atlantic Region, Occasional Report No. 23, pp. 76–77

  • Harris R, Krabbenhoft DP, Mason R, Murray MW, Reash R, Saltman T (2007) Ecosystem Response to Mercury Contamination: Indicators of Change. Boca Raton, FL: CRC Press, 216 pp

    Google Scholar 

  • Heinz GH, Hoffman DJ, Klimstra JD, Stebbins KR, Kondrad SL, Erwin CA (2009) Species differences in the sensitivity of avian embryos to methylmercury. Archives of Environmental Contamination and Toxicology 56:129–138

    Google Scholar 

  • Henny CJ, Hill EF, Hoffman DJ, Spalding MG, Grove RA (2002) Nineteenth century mercury: hazard to wading birds and cormorants of the Carson River, Nevada. Ecotoxicology 11:213231.

    CAS  Google Scholar 

  • Henny CJ, Grove RA, Kaiser JL (2008) Osprey distribution, abundance, reproductive success and contaminant burdens along lower Columbia River, 1997/1998 versus 2004. Archives of Environmental Contamination and Toxicology 54:525534.

    CAS  Google Scholar 

  • Heyes A, Miller C, Mason RP (2004) Mercury and methylmercury in Hudson River sediment: impact of tidal resuspension on partitioning and methylation. Marine Chemistry 90:7589.

    CAS  Google Scholar 

  • Heyes A, Mason RP, Kim EH, Sunderland E (2006) Mercury methylation in estuaries: insights from using measuring rates using stable mercury isotopes. Marine Chemistry 102:134147.

    CAS  Google Scholar 

  • Hollweg TA, Gilmour CC, Mason RP (2009) Methylmercury production in Chesapeake Bay and mid-Atlantic continental margin sediments. Marine chemistry (in press)

  • Hughes KD, Ewins PJ, Clark KE (1997) A comparison of mercury levels in feathers and eggs of osprey (Pandion haliaetus) in the North American Great Lakes. Archives of Environmental Contamination and Toxicology 33:441–452.

    CAS  Google Scholar 

  • Ikemoto T, Kunito T, Tanaka H, Baba N, Miyazaki N, Tanabe S (2004) Detoxification mechanism of heavy metals in marine mammals and seabirds: interaction of selenium with mercury, silver, copper, zinc, and cadmium in liver. Archives of Environmental Contaminants and Toxicology 47:402413.

    CAS  Google Scholar 

  • Itano K, Kawai S, Miyazaki N, Tatsukawa R, Fujiyama T (1984) Mercury and selenium levels in striped dolphins caught off the Pacific Coast of Japan. Agricultural and Biological Chemistry 48:11091116.

    CAS  Google Scholar 

  • Jewett SC, Zhang X, Naidu AS, Kelley JJ, Dasher D, Duffy LK (2003) Comparison of mercury and methylmercury in northern pike and Arctic grayling from western Alaska rivers. Chemosphere 50:383392.

    Google Scholar 

  • Kahl JS, Nelson SJ, Fernandez I, Haines T, Norton S, Wiersma GB, et al. (2007) Watershed nitrogen and mercury geochemical fluxes integrate landscape factors in long-term research watersheds at Acadia National Park, Maine, USA. Environmental Monitoring and Assessment 126:925.

    CAS  Google Scholar 

  • Kannan K, Smith RG, Lee RF, Windom HL, Heitmuller PT, Macauley JM, et al. (1998) Distribution of total mercury and methyl mercury in water, sediment, and fish from south Florida estuaries. Archives of Environmental Contamination and Toxicology 34:109–118.

    CAS  Google Scholar 

  • Katona SK, Rough V, Richardson DT (1993) A Field Guide to Whales, Porpoises, and Seals from Cape Cod to Newfoundland, Washington, DC: Smithsonian Institution Press.

    Google Scholar 

  • Khan AT, Weis JS (1993) Bioaccumulation of heavy metals in two populations of mummichog (Fundulus heteroclitus). Bulletin of Environmental Contamination and Toxicology 51:1– 5.

    CAS  Google Scholar 

  • Kim EH, Mason RP, Porter ET, Soulen HL (2006) The impact of resuspension on sediment mercury dynamics, and methylmercury production and fate: a mesocosm study. Marine Chemistry 102:300315.

    CAS  Google Scholar 

  • Klenavic K, Champoux L, O’Brien M, Daoust PY, Evans RD, Evans HE (2008) Mercury concentrations in wild mink (Mustela vison) and river otters (Lontra canadensis) collected from eastern and Atlantic Canada: relationship to age and parasitism. Environmental Pollution 156:359–366

    Google Scholar 

  • Koeman JH, Peeters WHM, Koudstaal-Hol CHM, Tjloe PS, deGoeij JJM (1973) Mercury-selenium correlations in marine mammals. Nature 245:385–386.

    CAS  Google Scholar 

  • Kraepiel AM, Keller K, Chin HB, Malcolm E.G, Morel FM (2003) Sources and variations of mercury in tuna. Environmental Science and Technology 37:5551–5558.

    CAS  Google Scholar 

  • Kuehl DW, Haebler R (1995) Organochlorine, organobromine, metal, and selenium residues in bottlenose dolphins (Tursiops truncatus) collected during an unusual mortality event in the Gulf of Mexico, 1990. Archives of Environmental Contamination and Toxicology 28:494 499.

    CAS  Google Scholar 

  • Lake JL, Ryba SA, Serbst J, Brown CF, Gibson L (2007) Mercury and stable isotopes of carbon and nitrogen in mink. Environmental Toxicology and Chemistry 26:26112619.

    CAS  Google Scholar 

  • Lamb D, Bowersox V (2000) The national atmospheric deposition program: an overview. Atmospheric Environment 34:16611663.

    CAS  Google Scholar 

  • Lamborg CH, Von Damm KL, Fitzgerald WF, Hammerschmidt CR, Zierenberg R (2006) Mercury and monomethylmercury in fluids from Sea Cliff submarine hydrothermal field, Gorda Ridge. Geophysical Research Letters 33:L17606..

    Google Scholar 

  • Landis MS, Stevens RK, Schaedlich F, Prestbo EM (2002) Development and characterization of an annular denuder methodology for the measurement of divalent inorganic reactive gaseous mercury in ambient air. Environmental Science & Technology 36:30003009.

    CAS  Google Scholar 

  • Lane OP, Major A, O’Brien K, Pau N, Evers DC (2008) Methylmercury Availability in New England Estuaries As Indicated by Saltmarsh Sharp-tailed Sparrow, 2004 2007. Report BRI 2008-11, Gorham, ME: BioDiversity Research Institute.

    Google Scholar 

  • LaRose C, Canuel R, Lucotte M, Di Giulio R (2008) Toxicological effects of methylmercury on walleye (Sander vitreus) and perch (Perca flavescens) from lakes of the boreal forest. Comparative Biochemistry and Physiology Part C 147:139–149.

    Google Scholar 

  • Laurier F, Mason RP (2007) Mercury concentration and speciation in the coastal and open ocean boundary layer. Journal of Geophysical Research 112:D6

    Google Scholar 

  • Lawrence AL, Mason RP (2001) Factors controlling the bioaccumulation of mercury and methylmercury by the estuarine amphipod Leptocheirus plumulosus. Environmental Pollution 111:217–231

    Google Scholar 

  • Lawson NM, Mason RP, Laporte JM (2001) The fate and transport of mercury, methylmercury, and other trace metals in Chesapeake Bay tributaries. Water Research 35:501515.

    CAS  Google Scholar 

  • Leermakers M, Meuleman C, Baeyens W (1995) Mercury speciation in the Scheldt estuary. Environmental Science and Technology 36:12451256.

    Google Scholar 

  • Lindberg SE, Brooks S, Lin CJ, Scott KJ, Landis MS, Stevens RK, et al. (2002) Dynamic oxidation of gaseous mercury in the Arctic troposphere at polar sunrise. Water Air and Soil Pollution 80:641652.

    Google Scholar 

  • Liu B, Schaider LA, Mason RP, Bank MS, Rabalais NN, Swarzenski PW, et al. (2009) Disturbance impacts on mercury dynamics in northern Gulf of Mexico sediments. Journal of Geophysical Research. doi:10.1029/2008JG000752

  • Mahaffey K (1998) Methylmercury exposure and neurotoxicity. JAMA 280:737738.

    CAS  Google Scholar 

  • Mahaffey KR, Clickner RP, Bodurow CC (2004) Blood organic mercury and dietary mercury intake: National Health and Nutrition Examination Survey, 1999 and 2000. Environmental Health Perspectives 112:562570.

    CAS  Google Scholar 

  • Martins I, Costa V, Porteiro FM, Santos RS (2006) Temporal and spatial changes in mercury concentrations in the North Atlantic as indicated by museum specimens of glacier lanternfish Benthosemal glaciale (Pisces: Myctophidae). Environmental Toxicology 21:528–532

    Google Scholar 

  • Mason RP (2000) The bioaccumulation of mercury, methylmercury and other toxic trace metals into pelagic and benthic organisms. In: Coastal and Estuarine Risk Assessment, Newman MC, Hale RC (editors), Boca Raton, FL: CRC Press, pp 127149.

    Google Scholar 

  • Mason RP, Benoit JM (2003) Organomercury compounds in the environment. In: Organometallic Compounds in the Environment, Craig PJ (editor), Chichester, UK: John Wiley & Sons.

    Google Scholar 

  • Mason RP, Lawrence Al (1999) Concentration, distribution, and bioavailability of mercury and methylmercury in sediments of Baltimore Harbor and Chesapeake Bay, Maryland, USA. Environmental Toxicology and Chemistry 18:24382447.

    CAS  Google Scholar 

  • Mason RP, Sheu GR (2002) Role of the ocean in the global mercury cycle. Global Biogeochemical Cycles 16:4041.

    Google Scholar 

  • Mason RP, Sullivan KA (1999) The distribution and speciation of mercury in the South and equatorial Atlantic. Deep Sea Research 46:937–956.

    CAS  Google Scholar 

  • Mason RP, Fitzgerald WF, Morel FMM (1994) The biogeochemical cycling of elemental mercury: anthropogenic influences. Geochimica et Cosmochimica Acta 58:31913198.

    CAS  Google Scholar 

  • Mason RP, Lawson NM, Lawrence AL, Leaner JJ, Lee JG, Sheu GR (1999) Mercury in the Chesapeake Bay. Marine Chemistry 65:7796.

    CAS  Google Scholar 

  • Mason RR, Abbott ML, Bodaly RA, Bullock OR, Evers DC, Lindberg SE, et al. (2005) Monitoring the response to changing mercury deposition. Environmental Science and Technology 39:14A22A.

    CAS  Google Scholar 

  • Mason RP, Heyes D, Sveinsdottir A (2006) Methylmercury concentrations in fish from tidal waters of the Chesapeake bay. Archives of Environmental Contamination and Toxicology 51:425437.

    CAS  Google Scholar 

  • [MDN] Mercury Deposition Network (2008) The Mercury Deposition Network webpage. Available: http://nadp.sws.uiuc.edu/mdn/

  • Monson BA (2009) Trend reversal of mercury concentrations in piscivorous fish from Minnesota lakes: 1982–2006. Environmental Science and Technology. doi:10.1021/es8027378

  • Monteiro LR, Furness RW (1997) Accelerated increase in mercury contamination in North Atlantic mesopelagic food chains as indicated by time series of seabird feathers. Environmental Toxicology and Chemistry 16:24892493.

    CAS  Google Scholar 

  • Monteiro LR, Costa V, Furness RW, Santos RS (1996) Mercury concentrations in prey fish indicate enhanced bioaccumulation in mesopelagic environments. Marine Ecology Progress Series 141:2125.

    CAS  Google Scholar 

  • Montevecchi WA, Birt-Friesen VL, Cairns DK (1992) Reproductive energetics and prey harvest of Leach’s storm-petrels in the Northwest Atlantic. Ecology 73:823–832.

    Google Scholar 

  • Moore M, Lefkovitz L, Hall M, Hillman R, Mitchell D, Burnett J (2004) Reduction in organic contaminant exposure and resultant hepatic hydropic vacuolation in winter flounder (Pseudopleuronectes americanus) following improved effluent quality and relocation of the Boston sewage outfall into Massachusetts Bay, USA: 1987–2003. Marine Pollution Bulletin 50:156–166.

    Google Scholar 

  • Myers RA, Baum JK, Shepherd TD, Powers SP, Peterson CH (2007) Cascading effects of the loss of apex predatory sharks from a coastal ocean. Science 315:1846–1850.

    CAS  Google Scholar 

  • Nagakura K, Amira S, Kurihara M, Koga T, Fujita T (1974) Mercury content of whales. Bulletin of the Tokai Regional Fisheries Research Laboratory 78:4146.

    CAS  Google Scholar 

  • Nisbet ICT, Montoya JP, Burger J, Hatch JJ (2002) Use of stable isotopes to investigate individual differences in diets and mercury exposures among common terns Sterna hirundo in breeding and wintering grounds. Marine Ecology Progress Series 242:267–274.

    CAS  Google Scholar 

  • Ogrinc N, Monperrus M, Kotnik J, Fajon V, Vidimova K, Amouroux D, et al. (2007) Distribution of mercury and methylmercury in deep-sea surficial sediments of the Mediterranean Sea. Marine Chemistry 107:31–48.

    CAS  Google Scholar 

  • O’Hara TM, Woshner V, Bratton G (2003) Inorganic pollutants in Arctic marine mammals. In: Toxicology of Marine Mammals, Vos J, Bossart GD, Fournier M, O’Shea TJ (editors), London: Taylor and Francis.

    Google Scholar 

  • Pacyna E.G, Pacyna JM, Steenhuisen F, Wilson S (2006) Global anthropogenic mercury emission inventory for 2000. Atmospheric Environment 40:4048–4063.

    CAS  Google Scholar 

  • Payne PM, Selzer LA (1989) The distribution, abundance and selected prey of the harbor seal, Phoca vitulina concolor, in southern New England. Marine Mammal Science 5:173–192.

    Google Scholar 

  • Pearce PA, Peakall DB, Reynolds LM (1979) Shell thinning and residues of organochlorines and mercury in seabird eggs, eastern Canada, 197076. Pesticide Monitoring Journal 13:6168.

    CAS  Google Scholar 

  • Pearce PA, Elliott JE, Peakall DB, Norstrom RJ (1989) Organochlorine contaminants in eggs of seabirds in the northwest Atlantic, 1968–1984. Environmental Pollution 56:217235.

    CAS  Google Scholar 

  • Porcella D (1996) Protocol for Estimating Historic Atmospheric Mercury Deposition. Electric Power Research Institute Technical Report-TR-106768, Palo Alto, CA

  • Power M, Klein GM, Guiguer KR, Kwan MKH (2002) Mercury accumulation in the fish community of a sub-Arctic lake in relation to trophic position and carbon sources. Journal of Applied Ecology 39:819–830.

    CAS  Google Scholar 

  • Ralston NVC, Blackwell JL, Raymond LJ (2007) Importance of molar ratios in selenium-dependent protection against methylmercury toxicity. Biological Trace Element Research 119:255–268.

    CAS  Google Scholar 

  • Ramlal PS, Kelly CA, Rudd JWM, Furutani A (1993) Sites of methyl mercury production in remote Canadian Shield lakes. Canadian Journal of Fisheries and Aquatic Sciences 50:972–979.

    CAS  Google Scholar 

  • Rattner BA, Hoffman DJ, Melancon MJ, Olsen GH, Schmidt SR, Parsons KC (2000) Organochlorine and metal contaminant exposure and effects in hatching black-crowned night herons (Nycticorax nycticorax) in Delaware Bay. Archives of Environmental Contamination and Toxicology 39:3845.

    CAS  Google Scholar 

  • Rattner BA, Golden NH, Toschik PC, McGowan PC, Custer TW (2008) Concentrations of metals in blood and feathers of nestling ospreys (Pandion haliaetus) in Chesapeake and Delaware Bays. Archives of Environmental Contamination and Toxicology 54:114–122.

    CAS  Google Scholar 

  • Rice DC, Schoeny R, Mahaffey K (2003) Methods and rationale for derivation of a reference dose for methylmercury by the US EPA. Risk Analysis 23:107–115.

    Google Scholar 

  • Rigét F, Dietz R, Born EW, Sonne C, Hobson KA (2007) Temporal trends of mercury in marine biota of west and northwest Greenland. Marine Pollution Bulletin 54:72–80.

    Google Scholar 

  • Ritchie CD, Richards W, Arp PA (2006) Mercury in fog on the Bay of Fundy (Canada). Atmospheric Environment 40:6321–6328.

    CAS  Google Scholar 

  • Rolfhus KR, Fitzgerald WF (2001) The evasion and spatial/temporal distribution of mercury species in Long Island Sound, CT–NY. Geochimica et Cosmochimica Acta 65:407–418.

    CAS  Google Scholar 

  • Ross P, DeSwart R, Addison R, Van Loveren H, Vos J, Osterhaus A (1996) Contaminant-induced immunotoxicology in harbour seals: wildlife at risk. Toxicology 112:157–169

    Google Scholar 

  • Ryaboshapko A, Bullock OR, Christensen J, Cohen M, Dastoor A, Ilyin I, et al. (2007a) Intercomparison study of atmospheric mercury models: 1. Comparison of models with short-term measurements. Science of the Total Environment 376:228–240.

    Google Scholar 

  • Ryaboshapko A, Bullock OR, Christensen J, Cohen M, Dastoor A, Ilyin I, et al. (2007b) Intercomparison study of atmospheric mercury models: 2. Modelling results vs. long-term observations and comparison of country deposition budgets. Science of the Total Environment 377:319–333.

    Google Scholar 

  • Scheuhammer AM, Meyer MW, Sandheinrich MB, Murray MW (2007) Effects of environmental methylmercury on the health of wild birds, mammals, and fish. AMBIO: A Journal of the Human Environment 36:12–19.

    CAS  Google Scholar 

  • Scheuhammer AM, Basu N, Burgess NM, Elliott JE, Campbell GD, Wayland M, et al. (2008) Relationships among mercury, selenium, and neurochemical parameters in common loons (Gavia immer) and bald eagles (Haliaeetus leucocephalus). Ecotoxicology 17:93–101.

    CAS  Google Scholar 

  • Schroeder WH, Munthe J (1998) Atmospheric mercury—an overview. Atmospheric Environment 32:809822.

    CAS  Google Scholar 

  • Schwarzbach SE, Albertson JD, Thomas CM (2006) Effects of predation, flooding, and contamination on reproductive success of California clapper rails (Rallus longirostris obsoletus) in San Francisco Bay. Auk 123:4560.

    Google Scholar 

  • Selin NE, Jacob DJ, Yantosca RM, Strode S, Jaeglé L, Sunderland EM (2008) Global 3-D land-ocean-atmosphere model for mercury: present-day vs. preindustrial cycles and anthropogenic enhancement factors for deposition. Global Biogeochemical Cycles 22; doi: 10.1029/2007GB003040

  • Shriver G, Evers DC, Hodgman TP, MacCulloch BJ, Taylor RJ (2006) Mercury in sharp-tailed sparrows breeding in coastal wetlands. Environmental Bioindicators 1:129–135.

    CAS  Google Scholar 

  • Skov H, Brooks SB, Goodsite ME, Lindberg SE, Meyers TP, Landis MS, et al. (2006) Fluxes of reactive gaseous mercury measured with a newly developed method using relaxed eddy accumulation. Atmospheric Environment 40:5452–5463.

    CAS  Google Scholar 

  • Slemr F, Brunk E.G, Ebinghaus R, Temme C, Munthe J, Wangberg I, et al. (2003) Worldwide trend of atmospheric mercury since 1977. Geophysical Research Letters 30:23.1–23.4

    Google Scholar 

  • Smith GM, Weis JS (1997) Predator-prey relationships in mummichogs (Fundulus heteroclitus (L.)): Effects of living in a polluted environment. Journal of Experimental Marine Biology and Ecology 209:75–87.

    Google Scholar 

  • Spalding MD, Fox HE, Allen GR, Davidson N, Ferdaña ZA, Finlayson M, et al. (2007) Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. BioScience 57:573–583.

    Google Scholar 

  • Staveland G, Marthinsen I, Norheim G, Julshamn K (2005) Levels of environmental pollutants in flounder (Platichthys flesus L.) and cod (Gadus morhua L.) caught in the waterway of Glomma, Norway. II. Mercury and arsenic. Archives of Environmental Contamination and Toxicology 24:187–193.

    Google Scholar 

  • Strom SM (2008) Total mercury and methylmercury residues in river otters (Lutra canadensis) from Wisconsin. Archives of Environmental Contamination and Toxicology 54:546–554.

    CAS  Google Scholar 

  • Sunderland EM (2007) Mercury exposure from domestic and imported estuarine and marine fish in the US seafood market. Environmental Health Perspectives 115:235–242.

    Article  CAS  Google Scholar 

  • Sunderland EM, Mason RP (2007) Human impacts on open ocean mercury concentrations. Global Biogeochemical Cycles 21. doi:10.1029/2006GB002876

  • Sunderland EM, Gobas FAPC, Heyes A, Branfireun BA, Bayer AK, Cranston RE, et al. (2004) Speciation and bioavailability of mercury in well-mixed estuarine sediments. Marine Chemistry 90:91–105.

    CAS  Google Scholar 

  • Sunderland EM, Cohen MD, Selin NE, Chmura GL (2008) Reconciling models and measurements to assess trends in atmospheric mercury deposition. Environmental Pollution 156:526–535

    Google Scholar 

  • Thompson DR, Furness RW, Walsh PM (1992) Historical changes in mercury concentrations in the marine ecosystem of the north and north-east Atlantic Ocean as indicated by seabird feathers. The Journal of Applied Ecology 29:7984.

    CAS  Google Scholar 

  • Topping G, Davies IM (1981) Methylmercury production in the marine water column. Nature 290:243244.

    CAS  Google Scholar 

  • Tremblay A, Lucotte M, Meili M, Cloutier L, Pichet P (1996a) Total mercury and methylmercury contents of insects from boreal lakes: ecological, spatial and temporal patterns. Water Quality Research Journal of Canada 31:851873.

    CAS  Google Scholar 

  • Tremblay A, Lucotte M, Rheault I (1996b) Methylmercury in a benthic food web of two hydroelectric reservoirs and a natural lake of northern Quebec (Canada). Water Air and Soil Pollution 91:25526.

    CAS  Google Scholar 

  • United State Environmental Protection Agency [USEPA] (1997) The Incidence and Severity of Sediment Contamination in Surface Water of the United States, EPA 823-R–97-006, -007, -008, Washington, DC: Office of Science and Technology.

    Google Scholar 

  • Varekamp JC, Kreulen B, ten Brink MRB, Mecray EL (2003) Mercury contamination chronologies from Connecticut wetlands and Long Island Sound sediments. Environmental Geology 43:268282.

    CAS  Google Scholar 

  • Vassiliev T, Bayer R, Congelton W, Bushway R, Vetlino J (2005) Heavy metal concentrations in lobster (Homarus americanus). Journal of Shellfish Research 24:680681.

    Google Scholar 

  • Wagemann R, Trebacz E, Boila G, Lockhart WL (1998) Methylmercury and total mercury in tissues of arctic marine mammals. The Science of the Total Environment 218:19–31.

    CAS  Google Scholar 

  • Wayland M, Garcia-Fernandez AJ, Neugebauer E, Gilchrist HG (2001) Concentrations of cadmium, mercury and selenium in blood, liver and kidney of common eider ducks from the Canadian Arctic. Environmental Monitoring and Assessment 71:255–267.

    CAS  Google Scholar 

  • Weihe P, Grandjean P, Debes F, White R (1996) Health implications for Faroe Islanders of heavy metals and PCBs from pilot whales. The Science of the Total Environment 186:141–148.

    CAS  Google Scholar 

  • Weis J (2002) Tolerance to environmental contaminants in the mummichog, Fundulus heteroclitus. Human and Ecological Risk Assessment 8:933–953.

    Google Scholar 

  • Whalin L, Kim EH, Mason R (2007) Factors influencing the oxidation, reduction, methylation and demethylation of mercury in coastal waters. Marine Chemistry 107:278–294.

    CAS  Google Scholar 

  • Wolfe MF, Schwarzbach S, Sulaiman RA (1998) Effects of mercury on wildlife: a comprehensive review. Environmental Toxicology and Chemistry 17:146–160.

    CAS  Google Scholar 

  • Wolfe MF, Atkeson T, Bowerman W, Burger K, Evers DC, Murray MW, et al. (2007) Wildlife indicators. In: Ecosystem Response to Mercury Contamination: Indicators of Change, Harris R, Krabbenhoft DP, Mason R, Murray MW, Reash R, Saltman T (editors), SETAC, Webster, NY: CRC Press, pp 123–189.

    Google Scholar 

  • Yates D, Mayack D, Munney K, Evers DC, Taylor RJ, Kaur T, et al. (2005) Mercury levels in mink and river otter in northeastern North America. Ecotoxicology 14:263–274.

    CAS  Google Scholar 

  • Zhou T, Weis P, Weis JS (1998) Mercury burden in two populations of Fundulus heteroclitus after sublethal methylmercury exposure. Aquatic Toxicology 42:37–47.

    CAS  Google Scholar 

Download references

Acknowledgments

Through a grant from the National Institute of Environmental Health Sciences, Dartmouth College organized a Hg workshop in November 2006 that provided the opportunity to discuss and describe a standardized marine mercury monitoring network based on the consensus of a group of interdisciplinary mercury scientists. We thank Wing Goodale of BioDiversity Research Institute for expertly generating the study area map, and David Gay, Coordinator for the National Atmospheric Deposition Program, which includes the Mercury Deposition Network. Effort toward manuscript preparation was partially supported by NIH Grant Number P42 ESO7373 from the NIEHS and the RI-INBRE Grant Number P20RR016457 from NCRR, NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Evers.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Evers, D.C., Mason, R.P., Kamman, N.C. et al. Integrated Mercury Monitoring Program for Temperate Estuarine and Marine Ecosystems on the North American Atlantic Coast. EcoHealth 5, 426–441 (2008). https://doi.org/10.1007/s10393-008-0205-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10393-008-0205-x

Keywords

  • mercury
  • marine ecosystems
  • estuaries
  • monitoring
  • birds
  • Atlantic Ocean