EcoHealth

, Volume 5, Issue 3, pp 268–274

Chytridiomycosis and Amphibian Population Declines Continue to Spread Eastward in Panama

  • Douglas C. Woodhams
  • Vanessa L. Kilburn
  • Laura K. Reinert
  • Jamie Voyles
  • Daniel Medina
  • Roberto Ibáñez
  • Alex D. Hyatt
  • Donna G. Boyle
  • James D. Pask
  • David M. Green
  • Louise A. Rollins-Smith
Short Communication

Abstract

Chytridiomycosis is a globally emerging disease of amphibians and the leading cause of population declines and extirpations at species-diverse montane sites in Central America. We continued long-term monitoring efforts for the presence of the fungal pathogen Batrachochytrium dendrobatidis (Bd) and for amphibian populations at two sites in western Panama, and we began monitoring at three new sites to the east. Population declines associated with chytridiomycosis emergence were detected at Altos de Campana National Park. We also detected Bd in three species east of the Panama Canal at Soberanía National Park, and prevalence data suggests that Bd may be enzootic in the lowlands of the park. However, no infected frogs were found further east at Tortí (prevalence <7.5% with 95% confidence). Our results suggest that Panama’s diverse and not fully described amphibian communities east of the canal are at risk. Precise predictions of future disease emergence events are not possible until factors underlying disease emergence, such as dispersal, are understood. However, if the fungal pathogen spreads in a pattern consistent with previous disease events in Panama, then detection of Bd at Tortí and other areas east of the Panama Canal is imminent. Therefore, development of new management strategies and increased precautions for tourism, recreation, and biology are urgently needed.

Keywords

amphibian Batrachochytrium dendrobatidis chytridiomycosis emerging disease Panama population declines 

References

  1. Berger L, Speare R, Daszak P, Green DE, Cunningham AA, Goggin CL, et al. (1998) Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. Proceedings of the National Academy of Sciences of the United States of America 95:9031–9036Google Scholar
  2. Boyle DG, Boyle DB, Olsen V, Morgan JAT, Hyatt AD (2004) Rapid quantitative detection of chytridiomycosis (Batrachochytrium dendrobatidis) in amphibian samples using real-time Taqman PCR assay. Diseases of Aquatic Organisms 60:133–139CrossRefGoogle Scholar
  3. Condit R, Robinson WD, Ibáñez R, Aguilar S, Sanjur A, Martínez R, et al. (2001) The status of the Panama Canal watershed and its biodiversity at the beginning of the 21st century. Bioscience 51:389–398CrossRefGoogle Scholar
  4. Finlay JC, Vredenburg VT (2007) Introduced trout sever trophic connections in watersheds: consequences for a declining amphibian. Ecology 88:2187–2198CrossRefGoogle Scholar
  5. Frost DR, Grant T, Faivovich J, Bain R, Haas A, Haddad CFB, et al. (2006) The amphibian tree of life. Bulletin of the American Museum of Natural History 297:1–370CrossRefGoogle Scholar
  6. Gagliardo R, Crump P, Griffith E, Mendelson J, Ross H, Zippel K (2008) The principles of rapid response for amphibian conservation, using the programmes in Panama as an example. International Zoo Yearbook 42:125–135CrossRefGoogle Scholar
  7. Gascon C, Collins JP, Moore RD, Church DR, McKay JE, Mendelson JR III (editors) (2007) Amphibian Conservation Action Plan. Gland, Switzerland and Cambridge, UK: IUCN/SSC Amphibian Specialist Group, pp 64Google Scholar
  8. Hyatt AD, Boyle DG, Olsen V, Boyle DB, Berger L, Obendorf D, et al. (2007) Diagnostic assays and sampling protocols for the detection of Batrachochytrium dendrobatidis. Diseases of Aquatic Organisms 73:175–192CrossRefGoogle Scholar
  9. Ibáñez R, Condit R, Angehr G, Aguilar S, García T, Martínez R, et al. (2002) An ecosystem report on the Panama Canal: monitoring the status of the forest communities and the watershed. Environmental Monitoring and Assessment 80:65–95CrossRefGoogle Scholar
  10. Ibáñez R, Jaramillo CA, Arrunátegui M, Fuenmayor Q, Solís FA (1995 [1997]) El inventario biológico del Canal de Panamá. Estudio Herpetológico. Scientia (Panamá) 2:111–159Google Scholar
  11. Johnson M, Speare R (2005) Possible modes of dissemination of the amphibian chytrid Batrachochytrium dendrobatidis in the environment. Diseases of Aquatic Organisms 65:181–186CrossRefGoogle Scholar
  12. Johnson M, Berger L, Phillips L, Speare R (2003) In vitro evaluation of chemical disinfectants and physical techniques against the amphibian chytrid, Batrachochytrium dendrobatidis. Diseases of Aquatic Organisms 57:255–260CrossRefGoogle Scholar
  13. Lips KR (1998) Decline of a tropical montane amphibian fauna. Conservation Biology 12:106–117CrossRefGoogle Scholar
  14. Lips KR (1999) Mass mortality and population declines of anurans at an upland site in western Panama. Conservation Biology 13:117–125CrossRefGoogle Scholar
  15. Lips KR, Brem F, Brenes R, Reeve JD, Alford RA, Voyles J, et al. (2006) Emerging infectious disease and the loss of biodiversity in a neotropical amphibian community. Proceedings of the National Academy of Sciences of the United States of America 102:3165–3170Google Scholar
  16. Lips KR, Diffendorfer J, Mendelson JR III, Sears MW (2008) Riding the wave: reconciling the roles of disease and climate change in amphibian declines. PLoS Biology 6:e72 DOI:10.1371/journal.pbio.0060072 CrossRefGoogle Scholar
  17. Longcore JE, Pessier AP, Nichols DK (1999) Batrachochytrium dendrobatidis gen. et sp. nov., a chytrid pathogenic to amphibians. Mycologia 91:219–227CrossRefGoogle Scholar
  18. McCallum H (2005) Inconclusiveness of chytridiomycosis as the agent in widespread frog declines. Conservation Biology 19:1421–1430CrossRefGoogle Scholar
  19. McDonald K, Alford R (1999) A review of declining frogs in northern Queensland. In: Campbell A (ed.),Declines and Disappearances of Australian Frogs, Canberra, Australia: Environment Australia, pp 14–22Google Scholar
  20. Morgan JAT, Vredenburg VT, Rachowicz LJ, Knapp RA, Stice MJ, Tunstall T, et al. (2007) Population genetics of the frog-killing fungus Batrachochytrium dendrobatidis. Proceeding of the National Academy of Sciences of the United States of America 104:13845–13850Google Scholar
  21. Pounds AJ, Bustamante MR, Coloma LA, Consuegra JA, Fogden MPL, Foster PN, et al. (2006) Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439:161–167CrossRefGoogle Scholar
  22. Puschendorf R, Bolaños F, Chaves G (2006) The amphibian chytrid fungus along an altitudinal transect before the first reported declines in Costa Rica. Biological Conservation 132:136–142CrossRefGoogle Scholar
  23. Ruiz A, Rueda-Almonacid JV (2008) Batrachochytrium dendrobatidis and chytridiomycosis in anuran amphibians of Colombia. EcoHealth 5:27–33CrossRefGoogle Scholar
  24. Skerratt LF, Berger L, Speare R, Cashins S, McDonald KR, Phillott AD, et al. (2007) Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. EcoHealth 4:125–134CrossRefGoogle Scholar
  25. Smith HM, Chiszar D (2006) Dilemma of name-recognition: why and when to use new combinations of scientific names. Herpetological Conservation and Biology 1:6–8Google Scholar
  26. Toft K, Rand AS, Clark M (1982) Population dynamics and seasonal recruitment in Bufo typhonius and Colostethus nubicola (Anura). In: Leigh EG, Rand AS, Windsor DM, (editors) The Ecology of a Tropical Forest: Seasonal Rhythms and Long-Term Changes, Washington, DC: Smithsonian Institution Press, pp 397–403Google Scholar
  27. Verburg P, Kilham SS, Pringle CM, Lips KR, Drake DL (2007) A stable isotope study of a neotropical stream food web prior to the extirpation of its large amphibian community. Journal of Tropical Ecology 23:643–651CrossRefGoogle Scholar
  28. Whiles MR, Lips KR, Pringle C, Kilham SS, Brenes R, Connelly S, et al. (2006) The consequences of amphibian population declines to the structure and function of neotropical stream ecosystems. Frontiers in Ecology and the Environment 4:27–34CrossRefGoogle Scholar
  29. Whitfield SM, Bell KE, Phillipi T, Sasa M, Bolanos F, Chaves G, et al. (2007) Amphibian and reptile declines over 35 years at La Selva, Costa Rica. Proceedings of the National Academy of Sciences of the United States of America 104:8352–8356Google Scholar
  30. Woodhams DC, Alford RA (2005) The ecology of chytridiomycosis in rainforest stream frog assemblages of tropical Queensland. Conservation Biology 19:1449–1459CrossRefGoogle Scholar
  31. Woodhams DC, Alford RA, Marantelli G (2003) Emerging disease of amphibians cured by elevated body temperature. Diseases of Aquatic Organisms 55:65–67CrossRefGoogle Scholar
  32. Woodhams DC, Alford RA, Briggs CJ, Johnson M, Rollins-Smith LA (2008) Life-history trade-offs influence disease in changing climates: strategies of an amphibian pathogen. Ecology 89:1627–1639 CrossRefGoogle Scholar

Copyright information

© International Association for Ecology and Health 2008

Authors and Affiliations

  • Douglas C. Woodhams
    • 1
  • Vanessa L. Kilburn
    • 2
    • 3
  • Laura K. Reinert
    • 4
  • Jamie Voyles
    • 5
  • Daniel Medina
    • 3
  • Roberto Ibáñez
    • 3
    • 6
    • 7
  • Alex D. Hyatt
    • 8
  • Donna G. Boyle
    • 8
  • James D. Pask
    • 4
  • David M. Green
    • 2
  • Louise A. Rollins-Smith
    • 4
  1. 1.Institute of ZoologyUniversity of ZürichZürichSwitzerland
  2. 2.Department of Biology, Redpath MuseumMcGill UniversityMontrealCanada
  3. 3.Smithsonian Tropical Research InstitutePanamáRepublic of Panamá
  4. 4.Departments of Microbiology and Immunology and of PediatricsVanderbilt UniversityNashvilleUSA
  5. 5.School of Public Health, Tropical Biology and Rehabilitation Sciences, Amphibian Disease Ecology GroupJames Cook UniversityTownsvilleAustralia
  6. 6.Departamento de ZoologíaUniversidad de PanamáPanamáRepublic of Panamá
  7. 7.Círculo Herpetológico de PanamáPanamáRepublic of Panamá
  8. 8.Australian Animal Health LaboratoryCSIRO Livestock IndustriesGeelongAustralia

Personalised recommendations