Ranking of the most relevant hospital inpatient diagnoses by age and diagnostic group based on DRG statistics in Germany

Abstract

Background

Inpatient healthcare demand is influenced by demographic changes; however, existing research mainly focuses on age-related conditions among older age groups and lacks empirical evidence. We aimed to identify important indicator diagnoses by group, which best characterise age-specific conditions and their demand of inpatient services in Germany.

Methods

Data stem from the general hospital diagnosis-related group (DRG) statistics in Germany from 2005 to 2010. To identify the indicator diagnosis groups, we used frequency analyses of individual diagnoses and combined them into common diagnosis groups, stratified by age and gender. We identified indicator diagnoses by the highest number of cases of inpatient hospital treatments in 2010 or the largest change in cases between 2005 and 2010. The most common diagnosis groups were then ranked using different weights. Changes were quantified using linear regression.

Results

Across all ages, 13 diagnosis groups were identified as frequently reported hospitalisations such as injuries to the head (S00-S09) among patients aged 0 to 17 years, and ischemic heart diseases (I20-I25) among patients aged 18 to 64 years. As the number of hospitals decreased, the demand in inpatient services increased. From 75 years and above, males were more frequently inpatients than females, and overall length of stay in hospitals appeared to decrease.

Conclusion

We empirically identified 13 diagnosis groups, which best describe the inpatient services utilised among various age groups in a ranked order. Findings from this study can provide a platform for determining future demand of inpatient services as well as the demographic-specific diagnoses that need attention.

This is a preview of subscription content, access via your institution.

Fig. 1

Availability of data and materials

The data that support the findings of this study are available from the Research Data Centres (RDC) of the Federal Statistical Office and the statistical Offices of the Laender, but restrictions apply to the availability of these data, which were used under licence for the current study, and so are not publicly available. Data are however available from the authors upon reasonable request and with permission of the RDC.

Abbreviations

DIMDI:

German Institute of Medical Documentation and Information

DRG:

Diagnosis-related group

ICD-10:

International Statistical Classification of Diseases and Related Health Problems 10th Revision

ICD-10-GM:

International Statistical Classification of Diseases and Related Health Problems 10th Revision German Modification

OECD:

Organisation for Economic Co-operation and Development

OPS:

German adaption of the International Classification of Health Interventions (ICHI)

RDC:

Research Data Centres of the Federal Statistical Office and the statistical Offices of the Laender

WHO:

World Health Organization

References

  1. Augurzky B, Gülker R, Krolop S, Schmidt CM, Schmidt H, Schmitz H, Terkatz S (2011) Krankenhaus Rating Report 2011 — Die fetten Jahren sind vorbei. Rheinisch-Westfälisches Institut für Wirtschaftsforschung (RWI), Essen, Germany

    Google Scholar 

  2. Bertelsmann Stiftung (2006) Wegweiser demographischer Wandel 2020: Analysen und Handlungskonzepte für Städte und Gemeinden. Verlag Bertelsmann Stiftung, Gutersloh, Germany

    Google Scholar 

  3. Bundesinstitut für Bau- Stadt- und Raumforschung (BBSR) im Bundesamt für Bauwesen und Raumordnung (BBR) (2012) Indikatoren und Karten zur Raum- und Stadtentwicklung (INKAR). Bundesinstitut für Bau- Stadt- und Raumforschung (BBSR) im Bundesamt für Bauwesen und Raumordnung (BBR). http://www.inkar.de/. Accessed 09 May 2019

  4. Burgdorf F, Sundmacher L (2014) Potentially avoidable hospital admissions in Germany: an analysis of factors influencing rates of ambulatory care sensitive hospitalizations. Dtsch Arztebl Int 111:215–223. https://doi.org/10.3238/arztebl.2014.0215

    Article  PubMed  PubMed Central  Google Scholar 

  5. Busse R, Blumel M (2014) Germany: health system review. Health Syst Transit 16:1–296

    PubMed  Google Scholar 

  6. Busse R, Geissler A, Quentin W, Wiley MM (eds) (2011) Diagnosis-related groups in Europe: moving towards transparency, efficiency and quality in hospitals. Open University Press, Berkshire, England

    Google Scholar 

  7. Canadian Institute for Health Information (CIHI) (2015) Care for children and youth with mental disorders report. Canadian Institute for Health Information (CIHI), Ottawa, ON, Canada

    Google Scholar 

  8. de Meijer C, Wouterse B, Polder J, Koopmanschap M (2013) The effect of population aging on health expenditure growth: a critical review. Eur J Ageing 10:353–361. https://doi.org/10.1007/s10433-013-0280-x

    Article  PubMed  PubMed Central  Google Scholar 

  9. Goto T, Tsugawa Y, Mansbach JM, Camargo CA Jr, Hasegawa K (2016) Trends in infectious disease hospitalizations in US children, 2000 to 2012. Pediatr Infect Dis J 35:e158–e163. https://doi.org/10.1097/inf.0000000000001134

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ha NT, Hendrie D, Moorin R (2014) Impact of population ageing on the costs of hospitalisations for cardiovascular disease: a population-based data linkage study. BMC Health Serv Res 14:554. https://doi.org/10.1186/s12913-014-0554-9

    Article  PubMed  PubMed Central  Google Scholar 

  11. Health and Social Care Information Centre (HSCIC) (2018) Hospital admitted patient care activity, 2017–18. NHS Digital. https://digital.nhs.uk/data-and-information/publications/statistical/hospital-admitted-patient-care-activity/2017-18. Accessed 09 May 2019

  12. Koopmanschap M, van Roijen L, Bonneux L, Bonsel G, Rutten F, van der Maas P (1994) Cost of diseases in international perspective. Eur J Pub Health 4:258–264. https://doi.org/10.1093/eurpub/4.4.258

    Article  Google Scholar 

  13. Lindgren H, Bergman S (2010) Chronic musculoskeletal pain predicted hospitalisation due to serious medical conditions in a 10 year follow up study. BMC Musculoskelet Disord 11:127. https://doi.org/10.1186/1471-2474-11-127

    Article  PubMed  PubMed Central  Google Scholar 

  14. Neumann H, Hellwig A (2002) Das Ende der Barmherzigkeit der Intransparenz. Dtsch Arztebl 99:3387–3391

    Google Scholar 

  15. Nichol KL, Nordin J, Mullooly J, Lask R, Fillbrandt K, Iwane M (2003) Influenza vaccination and reduction in hospitalizations for cardiac disease and stroke among the elderly. N Engl J Med 348:1322–1332. https://doi.org/10.1056/NEJMoa025028

    Article  PubMed  Google Scholar 

  16. Nichols M, Townsend N, Scarborough P, Rayner M (2014) Cardiovascular disease in Europe 2014: epidemiological update. Eur Heart J 35:2950–2959. https://doi.org/10.1093/eurheartj/ehu299

    Article  PubMed  CAS  Google Scholar 

  17. Nowossadeck S, Nowossadeck E (2011) Krankheitssspektrum und Sterblichkeit im Alter. Deutsches Zentrum für Altersfragen, Berlin, Germany

    Google Scholar 

  18. OECD (2015) Health at a glance 2015: OECD indicators. OECD Publishing, Paris, France

    Google Scholar 

  19. Pallin DJ, Espinola JA, Camargo CA Jr (2014) US population aging and demand for inpatient services. J Hosp Med 9:193–196. https://doi.org/10.1002/jhm.2145

    Article  PubMed  Google Scholar 

  20. Peters E, Pritzkuleit R, Beske F, Katalinic A (2010) Demographic change and disease rates. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 53:417–426. https://doi.org/10.1007/s00103-010-1050-y

    Article  PubMed  CAS  Google Scholar 

  21. Roeder N, Wolfgang F, Bunzemeier H (2010) DRG-Katalogeffekte. Bewertung von Katalogeffekten und Beschreibung ihrer Einflussfaktoren im G-DRG-System. Expertise im Auftrag des Zentralinstituts für die kassenärztliche Versorgung in der Bundesrepublik Deutschland. DRG-Research-Group, Universitätsklinikum Münster, Münster, Germany

    Google Scholar 

  22. Statistisches Bundesamt (Destatis) (2011) Tiefgegliederte Diagnosedaten der Krankenhauspatientinnen und -patienten 2010. Statistisches Bundesamt (Destatis), Wiesbaden, Germany

    Google Scholar 

  23. Statistisches Bundesamt (Destatis) (2013) Qualitätsbericht zur Fallpauschalenbezogenen Krankenhausstatistik. Statistisches Bundesamt (Destatis), Wiesbaden, Germany

    Google Scholar 

  24. Statistisches Bundesamt (Destatis) (2015) Grunddaten der Krankenhäuser — Erhebungsjahr 2015. Statistisches Bundesamt (Destatis), Wiesbaden, Germany

    Google Scholar 

  25. Statistisches Bundesamt (Destatis) (2017a) Bevölkerung Deutschlands bis 2060 — Ergebnisse der 13. koordinierten Bevölkerungsvorausberechnung. Aktualisierte Rechnung auf Basis 2015. Statistisches Bundesamt (Destatis), Wiesbaden, Germany

    Google Scholar 

  26. Statistisches Bundesamt (Destatis) (2017b) Fallpauschalenbezogene Krankenhausstatistik (DRG-Statistik) Diagnosen, Prozeduren, Fallpauschalen und Case Mix dervollstationären Patientinnen und Patienten in Krankenhäusern. Statistisches Bundesamt (Destatis), Wiesbaden, Germany

    Google Scholar 

  27. Statistisches Bundesamt (Destatis) (2018) Statistiches Jahrbuch: Deutschland und Internationales. Statistisches Bundesamt (Destatis), Wiesbaden, Germany

    Google Scholar 

  28. Strunk BC, Ginsburg PB, Banker MI (2006) The effect of population aging on future hospital demand. Health Aff (Millwood) 25:w141–w149. https://doi.org/10.1377/hlthaff.25.w141

    Article  Google Scholar 

  29. The Advisory Council on the Assessment of Developments in the Health Care System (2009) Coordination and integration — health care in an ageing society: special report 2009. Abridged version. The Advisory Council on the Assessment of Developments in the Health Care System, Bonn, Germany

    Google Scholar 

  30. Winter MH-J, Maaz A, Kuhlmey A (2006) Outpatient and inpatient medical care of the elderly. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 49:575–582. https://doi.org/10.1007/s00103-006-1272-1

    Article  Google Scholar 

Download references

Funding

The Roland Ernst Foundation of Public Health provided financial support.

Author information

Affiliations

Authors

Contributions

OS planned, guided, analysed, and wrote the manuscript. AG analysed and wrote the manuscript. LL conducted the literature search and wrote the manuscript. AW, DS, PP supported and advised analyses. AK and JK contributed to the discussion. SK advised analyses, contributed to the discussion, and provided supervision. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Olaf Schoffer.

Ethics declarations

Ethics approval and consent to participate

Not applicable (study based on secondary data).

Consent for publication

Not applicable (study based on secondary data).

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schoffer, O., Gottschalk, A., Liang, L.A. et al. Ranking of the most relevant hospital inpatient diagnoses by age and diagnostic group based on DRG statistics in Germany. J Public Health (Berl.) (2019). https://doi.org/10.1007/s10389-019-01155-4

Download citation

Keywords

  • Diagnosis-related group
  • ICD-10
  • Diagnoses
  • Demographic transition
  • Hospitalisation