Advertisement

Sociodemographic disparities in the consumption of ultra-processed food and drink products in Southern Brazil: a population-based study

  • Silvia Giselle Ibarra Ozcariz
  • Katia Jakovljevic Pudla
  • Ana Paula Bortoletto Martins
  • Marco Aurélio Peres
  • David Alejandro González-Chica
Original Article

Abstract

Purpose

This study aims to describe the distribution of ultra-processed food and drink products (UPP) consumption according to sociodemographic characteristics in adults from southern Brazil, and to investigate which are the most-consumed UPP subtypes in the different social strata.

Methods

Cross-sectional analysis of the second wave of a population-based cohort of 1720 adults. The usual caloric intake and the caloric contribution of UPP to total energy intake (%CTEI) were estimated by the application of two 24-h dietary recalls (adjusted by intra- and inter-individual variability). Data were analyzed according to gender, age, marital status, schooling, and family income. Linear regression models were used to estimate the adjusted means.

Results

Consumption data were obtained from 1206 adults (70.1% of the original cohort). Mean UPP consumption was higher in males than females (829.6 kcal vs 694.3 kcal, p value < 0.001), but the %CTEI from UPP increased in females (34.7% vs 39.3%, p value < 0.001), even after adjusting for sociodemographic variables. In the full model, which included all sociodemographic variables, %CTEI from UPP was inversely associated with age (difference between extreme categories 7.1 pp., 95 CI% 7.7–6.5) and directly associated with schooling (difference between extreme categories 6.3 pp., 95 CI% 5.5–7.1). The subtypes of UPP that contributed most to the observed differences were processed breads, fast food, and ultra-processed pies and sweets.

Conclusions

UPP account for a third of the calories normally consumed, with women, young people, and better educated individuals being the most vulnerable groups. These results can help when planning public policies to reduce UPP consumption.

Keywords

Food habits Nutrition Risk factors Population characteristics Nutrition survey Nutritional epidemiology 

Notes

Acknowledgments

We would like to express our gratitude to Dr. Nilza Nunes da Silva, Department of Epidemiology, School of Public Health of the University of São Paulo, São Paulo, Brazil, for her advice on sample procedures. We would also like to thank the Brazilian Institute of Geography and Statistics (IBGE) and Florianópolis Health Authority staff for their valuable help with the practical aspects of this study. We are also grateful to Dr. Carlos Augusto Monteiro and his research group “Núcleo de Pesquisas Epidemiológicas em Nutrição e Saúde” (NUPENS), for their advice and assistance regarding food group classification. We appreciate the cooperation of Dr. Regina Mara Fisberg and her research group “Grupo de Pesquisa de Avaliação do Consumo Alimentar” (GAC), for facilitating the use of Nutrition Data Software for Research (NDSR) software. The authors conceived and designed this study, performed the experiments, analyzed the data, and wrote the paper jointly.

Author contribution

Author Silvia Giselle Ibarra Ozcariz has participated in the research planning process, field and data entry supervision, conducted the statistical analyses, written, and led this article. Katia Jakovljevic Pudla has participated in the study design and data entry and contributed in revising this article. Ana Paula Bortoletto Martins has contributed to classifying the food groups and revising this article. Marco Peres led the EpiFloripa research and contributed to the revision of this article. David González-Chica contributed to the study design, statistical analysis, writing, and revision of the article.

Compliance with ethical standards

The EpiFloripa Adults 2009 project was approved by the Ethics Committee on Human Research of the Federal University of Santa Catarina (UFSC), under protocol number 351 / 08. The subjects were informed about the objectives of the study and were requested to sign an Informed Consent Form.

Financial support

The Project was sponsored by the Brazilian National Council for Scientific and Technological Development (CNPq), grant number 485327/2007–4.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Aggarwal A, Monsivais P, Drewnowski A (2012) Nutrient intakes linked to better health outcomes are associated with higher diet costs in the US. PLoS One 77(5):e37533.  https://doi.org/10.1371/journal.pone.0037533 CrossRefGoogle Scholar
  2. Benzecry E, Pinheiro A, Lacerda E (2001) Tabela para avaliação de consumo alimentar em medidas caseiras. Editora Atheneu, Rio de JaneiroGoogle Scholar
  3. Boing AC, Peres KG, Boing AF, Hallal PC, Silva NN, Peres MA (2014) EpiFloripa Health Survey: the methodological and operational aspects behind the scenes. Rev Bras Epidemiol 17:147–162.  https://doi.org/10.1590/1415-790X201400010012ENG CrossRefPubMedGoogle Scholar
  4. Bombem KCM, Bandoni DH, Canella DS, Jaime PC (2012) Manual de medidas caseiras e receitas para cálculos dietéticos. M. Books, São PauloGoogle Scholar
  5. IBGE (2010) Pesquisa de orçamentos familiares: 2008–2009. Antropometria e estado nutricional de crianças, adolescentes e adultos no Brasil. IBGE, Rio de JaneiroGoogle Scholar
  6. Brug J (2009) Determinants of healthy eating: motivation, abilities and environmental opportunities. Fam Pract 25:50–55.  https://doi.org/10.1093/fampra/cmn063 CrossRefGoogle Scholar
  7. Canella DS, Levy RB, Martins APB, Claro RM, Moubarac JC, Baraldi LG, Cannon G, Monteiro CA (2014) Ultra-processed food products and obesity in Brazilian households (2008–2009). PLoS One 9(3):e92752.  https://doi.org/10.1371/journal.pone.0092752 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Djupegot IL, Nenseth CB, Bere E, Bjørnarå HBT, Helland SH, Øverby NC, Torstveit MK, Stea TH (2017) The association between time scarcity, sociodemographic correlates and consumption of ultra-processed foods among parents in Norway: a cross-sectional study. BMC Public Health 17:447.  https://doi.org/10.1186/s12889-017-4408-3 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Dodd KW, Guenther PM, Freedman LS, Subar AF, Kipnis V, Midthune D, Tooze JA, Krebs-Smith SM (2006) Statistical methods for estimating usual intake of nutrients and foods: a review of the theory.see comment. J Am Diet Assoc 106:1640–1650.  https://doi.org/10.1016/j.jada.2006.07.011 CrossRefPubMedGoogle Scholar
  10. Fisberg RM, Marchioni DML (2012) Manual de avaliação do consumo alimentar em estudos populacionais: a experiência do inquérito de saúde em São Paulo (ISA). Universidade de São Paulo, São PauloGoogle Scholar
  11. GBD 2015 Risk Factors Collaborators (2016) Global, regional, and national comparative risk assessment of 79 behavioural, enviro. Lancet (London, England) 388:1659–1724.  https://doi.org/10.1016/S0140-6736(16)31679-8 CrossRefGoogle Scholar
  12. Gonçalves H, González DA, Araújo CP, Muniz L, Tavares P, Assunção MC, Menezes AMB, Hallal PC (2012) Adolescents’ perception of causes of obesity: Unhealthy lifestyles or heritage? J Adolesc Health 51(6):S46–S52.  https://doi.org/10.1016/j.jadohealth.2012.08.015 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Gonzalez-Anton C, Artacho R, Ruiz-Lopez MD, Gil A, Mesa MD (2017) Modification of appetite by bread consumption: A systematic review of randomized controlled trials. Crit Rev Food Sci Nutr 57:3035–3050.  https://doi.org/10.1080/10408398.2015.1084490 CrossRefPubMedGoogle Scholar
  14. IBGE (2011) Taxa de analfabetismo da população de 15 anos ou mais de idade, por grupos de idade, segundo as Unidades da Federação e os municípios das capitais 2000/2010. IBGE, Rio de JaneiroGoogle Scholar
  15. Kamphuis CBM, Giskes K, de Bruijn GJ, Wendel-Vos W, Brug J, van Lenthe FJ (2006) Environmental determinants of fruit and vegetable consumption among adults: a systematic review. Br J Nutr 96:620–635.  https://doi.org/10.1079/bjn20061896 CrossRefPubMedGoogle Scholar
  16. Kanter R, Caballero B (2012) Global gender disparities in obesity: a review. Adv Nutr An Int Rev J 3:491–498.  https://doi.org/10.3945/an.112.002063 CrossRefGoogle Scholar
  17. Larson N, Neumark-Sztainer D, Laska MN, Story M (2011) Young adults and eating away from home: associations with dietary intake patterns and weight status differ by choice of restaurant. J Am Diet Assoc 111:1696–1703.  https://doi.org/10.1016/j.jada.2011.08.007 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Levy RB, Claro RM, Mondini L, Sichieri R, Monteiro CA (2012) Regional and socioeconomic distribution of household food availability in Brazil, in 2008-2009. Rev Saude Publica 46:6–15.  https://doi.org/10.1590/S0034-89102011005000088 CrossRefPubMedGoogle Scholar
  19. Louzada ML da C, Baraldi LG, Steele EM, Martins APB, Canella DS, Moubarac JC, Levy RB, Cannon G, Afshin A, Imamura F, Mozaffarian D, Monteiro CA (2015) Consumption of ultra-processed foods and obesity in Brazilian adolescents and adults. Prev Med (Baltim) 81:9–15.  https://doi.org/10.1016/j.ypmed.2015.07.018 CrossRefGoogle Scholar
  20. Martínez Steele E, Popkin BM, Swinburn B, Monteiro CA (2017) The share of ultra-processed foods and the overall nutritional quality of diets in the US: evidence from a nationally representative cross-sectional study. Popul Health Metrics 15:6.  https://doi.org/10.1186/s12963-017-0119-3 CrossRefGoogle Scholar
  21. Mehta NK, Chang VW (2008) Weight status and restaurant availability. A multilevel analysis. Am J Prev Med 34:127–133.  https://doi.org/10.1016/j.amepre.2007.09.031 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Monteiro CA, Cannon G, Moubarac J-C, Levy RB, Louzada MLC, Jaime PC (2017) The UN Decade of Nutrition, the NOVA food classification and the trouble with ultra-processing. Public Health Nutr 21(1):5-17.  https://doi.org/10.1017/S1368980017000234 CrossRefPubMedGoogle Scholar
  23. Monteiro CA, Cannon G, Moubarac J-C, Martins APB, Martins CA, Garzillo J, Canella DS, Baraldi LG, Barciotte M, Louzada ML da C, Levy RB, Claro RM, Jaime PC (2015) Dietary guidelines to nourish humanity and the planet in the twenty-first century. A blueprint from Brazil. Public Health Nutr 18:2311–2322.  https://doi.org/10.1017/S1368980015002165 CrossRefPubMedGoogle Scholar
  24. Moubarac J-C, Claro RM, Baraldi LG, Levy RB, Martins APB, Cannon G, Monteiro CA (2013) International differences in cost and consumption of ready-to-consume food and drink products: United Kingdom and Brazil, 2008–2009. Glob Public Health 8:845–856.  https://doi.org/10.1080/17441692.2013.796401 CrossRefPubMedGoogle Scholar
  25. Moubarac J-C, Pan American Health Organization, World Health Organization (2015) Ultra-processed food and drink products in Latin America: Trends, impact on obesity, policy implications. In: http://iris.paho.org/xmlui/bitstream/handle/123456789/7699/9789275118641_eng.pdf. Accessed 26 June 2017
  26. Moubarac JC, Batal M, Martins APB, Claro R, Levy RB, Cannon G, Monteiro C (2014) Processed and ultra-processed food products: Consumption trends in Canada from 1938 to 2011. Can J Diet Pract Res 75:15–21.  https://doi.org/10.3148/75.1.2014.15 CrossRefPubMedGoogle Scholar
  27. NEPA - Núcleo de Estudos e Pesquisas em Alimentação (2011) Tabela brasileira de composição de alimentos. NEPA - Unicamp:161.  https://doi.org/10.1007/s10298-005-0086-x CrossRefGoogle Scholar
  28. Ozcariz SGI, Bernardo C de O, Cembranel F, Peres MA, González-Chica DA (2015) Dietary practices among individuals with diabetes and hypertension are similar to those of healthy people: a population-based study. BMC Public Health 15:479.  https://doi.org/10.1186/s12889-015-1801-7 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Popkin BM, Adair LS, Ng SW (2012) Global nutrition transition and the pandemic of obesity in developing countries. Nutr Rev 70:3–21.  https://doi.org/10.1111/j.1753-4887.2011.00456.x CrossRefPubMedPubMedCentralGoogle Scholar
  30. Silva DAS, Peres KG, Boing AF, González-Chica DA, Peres MA (2013) Clustering of risk behaviors for chronic noncommunicable diseases: A population-based study in southern Brazil. Prev Med (Baltim) 56:20–24.  https://doi.org/10.1016/j.ypmed.2012.10.022 CrossRefGoogle Scholar
  31. de Sousa TF, Nahas MV, Silva DAS, Del Duca GF, Peres MA (2011) Fatores associados à obesidade central em adultos de Florianópolis, Santa Catarina: estudo de base populacional. Rev Bras Epidemiol 14:296–309.  https://doi.org/10.1590/S1415-790X2011000200011 CrossRefPubMedGoogle Scholar
  32. Stevens GA, Singh GM, Lu Y, Danaei G, Lin JK, Finucane MM, Bahalim AN, McIntire RK, Gutierrez HR, Cowan M, Paciorek CJ, Farzadfar F, Riley L, Ezzati M (2012) National, regional, and global trends in adult overweight and obesity prevalences. Popul Health Metrics 10:22.  https://doi.org/10.1186/1478-7954-10-22 CrossRefGoogle Scholar
  33. Vlismas K, Stavrinos V, Panagiotakos DB (2009) Socio-economic status, dietary habits and health-related outcomes in various parts of the world: A review. Cent Eur J Public Health 17:55–63CrossRefGoogle Scholar
  34. WHO (2013) Global action plan for the prevention and control of noncommunicable diseases 2013–2020. World Heal Organ 102Google Scholar
  35. Willett W (2013) Nutritional epidemiology, 3rd edn. Oxford University Press, New YorkGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Silvia Giselle Ibarra Ozcariz
    • 1
    • 2
  • Katia Jakovljevic Pudla
    • 1
  • Ana Paula Bortoletto Martins
    • 3
  • Marco Aurélio Peres
    • 1
    • 4
  • David Alejandro González-Chica
    • 1
    • 5
  1. 1.Graduate Program in Public HealthFederal University of Santa CatarinaFlorianópolisBrazil
  2. 2.Center of Health Sciences, Graduation Program in NutritionUniversidade Federal de Santa CatarinaFlorianópolisBrazil
  3. 3.Núcleo de Pesquisas Epidemiológicas em Nutrição e Saúde, Faculdade de Saúde PúblicaUniversidade de São PauloSão PauloBrazil
  4. 4.Menzies Health Institute Queensland and School of Dentistry and Oral HealthGriffith UniversityGold CoastAustralia
  5. 5.Discipline of General Practice, School of MedicineThe University of AdelaideAdelaideAustralia

Personalised recommendations