Advertisement

Esophagus

, Volume 15, Issue 2, pp 53–58 | Cite as

Angiogenic factors: role in esophageal cancer, a brief review

  • Kátia Ladeira
  • Filipa Macedo
  • Adhemar Longatto-Filho
  • Sandra F. Martins
Review Article
  • 81 Downloads

Abstract

Esophageal cancer has an aggressive behavior with rapid tumor mass growth and frequently poor prognosis; it is known as one of the most fatal types of cancer worldwide. The identification of potential molecular markers that can predict the response to treatment and the prognosis of this cancer has been subject of a vast investigation in the recent years. Among several molecules, various angiogenic factors that are linked to the tumor development, growth, and invasion, such as VEGF, HGF, angiopoietin-2, IL-6, and TGF-B1, were investigated. In this paper, the authors sought to review the role of these angiogenic factors in prognosis and hypothesize how they can be used as a treatment target.

Keywords

Esophageal cancer HGF Angiopoietin-2 IL-6 VEGF TGF-B1 

Notes

Compliance with ethical standards

Ethical statement

This article does not contain any studies with human or animal subjects performed by any author(s).

Conflict of interest

The authors have no conflicts of interest and received no financial support for this study.

References

  1. 1.
    Pennathur A, Gibson MK, Jobe BA, et al. Oesophageal carcinoma. Lancet. 2013;381:400–12.CrossRefPubMedGoogle Scholar
  2. 2.
    Jemal A, Siegel R, Ward E, et al. Cancer statistics 2009. CA Cancer Clin. 2009;59:225–49.CrossRefGoogle Scholar
  3. 3.
    Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420:860–7.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.CrossRefPubMedGoogle Scholar
  5. 5.
    Guo Y, Xu F, Lu T, et al. Interleukin-6 signaling pathway in targeted therapy for cancer. Cancer Treat Rev. 2012;38:904–10.CrossRefPubMedGoogle Scholar
  6. 6.
    Kishimoto T. Interleukin-6: from basic science to medicine 40 years in immunology. Annu Rev Immunol. 2005;23:1–21.CrossRefPubMedGoogle Scholar
  7. 7.
    Oshima Y, Yajima S, Yamazaki K, et al. Angiogenesis-related factors are molecular targets for diagnosis and treatment of patients with esophageal carcinoma. Ann Thorac Cardiovasc Surg. 2010;16:389–93.PubMedGoogle Scholar
  8. 8.
    Xu Z, Wang S, Wu M, et al. TGF beta1 and HGF protein secretion by esophageal squamous epithelial cells and stromal fibroblasts in oesophageal carcinogenesis. Oncol Lett. 2013;6:401–6.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Sugiura K, Ozawa S, Kitagawa Y, et al. Co-expression of aFGF and FGFR-1 is predictive of a poor prognosis in patients with esophageal cancer. World J Gastroenterol. 2005;11:2188–92.CrossRefGoogle Scholar
  10. 10.
    Folkman J. How is blood vessel growth regulated in normal and neoplastic tissue? Cancer Res. 1986;11:467–73.Google Scholar
  11. 11.
    Leo C, Giaccia AJ, Denko NC. The hypoxic tumor microenvironment and gene expression. Semin Radiat Oncol. 2004;14:207–14.CrossRefPubMedGoogle Scholar
  12. 12.
    Kimura S, Kitadai Y, Tanaka S, et al. Expression of hypoxia inducible factor (HIF)-1α is associated with vascular endothelial growth factor expression and tumour angiogenesis in human oesophageal squamous cell carcinoma. Eur J Cancer. 2004;40:1904–12.CrossRefPubMedGoogle Scholar
  13. 13.
    Birchmeier C, Birchmeier W, Gherardi E, et al. Metastasis, motility and more. Nat Rev Mol Cell Biol. 2003;4:915–25.CrossRefPubMedGoogle Scholar
  14. 14.
    Bottaro DP, Rubin JS, Faletto DL, et al. Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science. 1991;251:802–4.CrossRefPubMedGoogle Scholar
  15. 15.
    Ren Yi, Cao Brian, Law Simon, et al. Hepatocyte growth factor promotes cancer cell migration and angiogenic factors expression: a prognostic marker of human esophageal squamous cell carcinomas. Clin Cancer Res. 2005;3:6190–7.CrossRefGoogle Scholar
  16. 16.
    Saeki H, Oda S, Kawaguchi H, et al. Concurrent overexpression of Ets-1 and c-Met correlates with a phenotype of high cellular motility in human esophageal cancer. Int J Cancer. 2002;98:8–13.CrossRefPubMedGoogle Scholar
  17. 17.
    Zhou YZ, Fang XQ, Li H, et al. Role of serum angiopoietin-2 level in screening for esophageal squamous cell cancer and its precursors. Chin Med J (Engl). 2007;120:1216–9.Google Scholar
  18. 18.
    Dreikhausen L, Blank S, Sisic L, et al. Association of angiogenic factors with prognosis in esophageal cancer. BMC Cancer. 2015;15:121–7.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Bromberg J. Stat proteins and oncogenesis. J Clin Invest. 2002;109:1139–42.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Zhao Z-F, Li J-X, Ye Rui, et al. Interleukin-6 as a potential molecular target in esophageal squamous cell carcinoma. Oncol Lett. 2016;11:925–32.CrossRefPubMedGoogle Scholar
  21. 21.
    Schindler C, Levy DE, Decker T. JAK-STAT signaling, from interferons to cytokines. J Biol Chem. 2007;282:20059–63.CrossRefPubMedGoogle Scholar
  22. 22.
    Michiels C, Minet E, Mottet D, et al. Regulation of gene expression by oxygen: NF-kappaB and HIF-1, two extremes. Free Radic Biol Med. 2002;1:1231–42.CrossRefGoogle Scholar
  23. 23.
    Wang GL, Jiang BH, Rue EA, et al. Hypoxia inducible factor 1 is a basic helix-loop-helix–PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA. 1995;1:5510–4.CrossRefGoogle Scholar
  24. 24.
    Carmeliet P, Dor Y, Herbert JM, et al. Role of HIF-1α in hypoxia-mediated apoptosis, cell proliferation and tumor angiogenesis. Nature. 1998;394:485–90.CrossRefPubMedGoogle Scholar
  25. 25.
    Veikkola T, Alitalo K. VEGFs, receptors and angiogenesis. Semin Cancer Biol. 1999;9:211–20.CrossRefPubMedGoogle Scholar
  26. 26.
    Pugh CW, Ratcliffe PJ. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med. 2003;9:677–84.CrossRefPubMedGoogle Scholar
  27. 27.
    Dibbens JA, Miller DL, Damert A, et al. Hypoxic regulation of vascular endothelial growth factor mRNA stability requires the cooperation of multiple RNA elements. Mol Biol Cell. 1999;10:907–19.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Ellis LM, Liu W, Fan F, et al. Role of angiogenesis inhibitors in cancer treatment. Oncology (Williston Park). 2001;15:39–46.Google Scholar
  29. 29.
    Amioka T, Kitadai Y, Tanaka S, et al. Vascular endothelial growth factor- C expression predicts lymph node metastasis of human gastric carcinoma invading the submucosa. Eur J Cancer. 2002;15:1413–9.CrossRefGoogle Scholar
  30. 30.
    Zhong H, De Marzo AM, Laughner E, et al. Over-expression of hypoxia-inducible factor 1α in common human cancers and their metastases. Cancer Res. 1999;59:5830–5.PubMedGoogle Scholar
  31. 31.
    Aebersold DM, Burri P, Beer KT, et al. Expression of hypoxia-inducible factor-1 alpha: a novel predictive and prognostic parameter in the radiotherapy of oropharyngeal cancer. Cancer Res. 2001;12:2911–6.Google Scholar
  32. 32.
    Tzao C, Lee S-C, Tung H-J, et al. Expression of hypoxia-inducible factor (HIF)-1alpha and vascular endothelial growth factor (VEGF)-D as outcome predictors in resected esophageal squamous cell carcinoma. Dis Markers. 2008;25:141–8.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Olenyuk BZ, Zhang GJ, Klco JM, et al. Inhibition of vascular endothelial growth factor with a sequence-specific hypoxia response element antagonist. Proc Natl Acad Sci USA. 2004;101:16768–73.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Tan C, de Noronha RG, Roecker AJ, et al. Identification of a novel small-molecule inhibitor of the hypoxia-inducible factor 1 pathway. Cancer Res. 2005;65:605–12.PubMedGoogle Scholar
  35. 35.
    Sandler A. Bevacizumab in non-small cell lung cancer. Clin Cancer Res. 2007;355:4613–6.CrossRefGoogle Scholar
  36. 36.
    Samson P, Lockhart AC. Biologic therapy in esophageal and gastric malignancies: current therapies and future directions. J Gastrointest Oncol. 2017;8(3):418–29.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Massagué J. TGF-β signal transduction. Annu Rev Biochem. 1998;67:753–91.CrossRefPubMedGoogle Scholar
  38. 38.
    Lahm H, Odartchenko N. Role of transforming growth factor β in colorectal cancer. Growth Factors. 1993;9:1–9.CrossRefPubMedGoogle Scholar
  39. 39.
    S.-W I, Volpert OV, Bouck NP, et al. Smad4/DPC4-mediated tumor suppression through suppression of angiogenesis. Proc Natl Acad Sci USA. 2000;7:9624–9.Google Scholar
  40. 40.
    Shirai Y, Kawata S, Tamura S, et al. Plasma transforming growth factor-β 1 in patients with hepatocellular carcinoma comparison with chronic liver diseases. Cancer (Phila). 1994;73:2275–9.CrossRefGoogle Scholar
  41. 41.
    Junker U, Knoefel B, Nuske K, et al. Transforming growth factor-β 1 is significantly elevated in plasma of patients suffering from renal cell carcinoma. Cytokine. 1996;8:794–8.CrossRefPubMedGoogle Scholar
  42. 42.
    Tsushima H, Kawata S, Tamura S, et al. High levels of transforming growth factor-β 1 in patients with colorectal cancer: association with disease progression. Gastroenterology. 1996;110:375–82.CrossRefPubMedGoogle Scholar
  43. 43.
    Saito H, Tsujitani S, Oka S, et al. The expression of transforming growth factor-β1 is significantly correlated with the expression of vascular endothelial growth factor and poor prognosis of patients with advanced gastric carcinoma. Cancer (Phila). 1999;86:1455–62.CrossRefGoogle Scholar
  44. 44.
    Shariat SF, Kim JH, Andrews B, et al. Preoperative plasma levels of transforming growth factor-β 1 strongly predict clinical outcome in patients with bladder carcinoma. Cancer (Phila). 2001;92:2985–92.CrossRefGoogle Scholar
  45. 45.
    Narai S, Watanabe M, Hasegawa H, et al. Significance of transforming growth factor-β1 as a new tumor marker for colorectal cancer. Int J Cancer. 2002;97:508–11.CrossRefPubMedGoogle Scholar
  46. 46.
    Natsugoe S, Xiangming C, Matsumoto M, et al. Smad4 and transforming growth factor-β1 expression in patients with squamous cell carcinoma of the esophagus. Clin Cancer Res. 2002;8:1838–42.PubMedGoogle Scholar
  47. 47.
    Chevallier JM, Vitte E, Derosier C, et al. The thoracic esophagus: sectional anatomy and radiosurgical applications. Surg Radiol Anat. 1991;13:313–21.CrossRefPubMedGoogle Scholar
  48. 48.
    Fukuchi M, Miyazaki T, Fukai Y, et al. Plasma level of transforming growth factor-β1 measured from the azygos vein predicts prognosis in patients with esophageal cancer. Clin Cancer Res. 2004;10:2738–41.CrossRefPubMedGoogle Scholar
  49. 49.
    Nakamura T, Ozawa S, Kitagawa Y, et al. Expression of basic fibroblast growth factor is associated with a good outcome in patients with squamous cell carcinoma of the esophagus. Oncol Rep. 2005;14:617–23.PubMedGoogle Scholar

Copyright information

© The Japan Esophageal Society and Springer Japan KK, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Portuguese Oncology InstituteLisbonPortugal
  2. 2.Life and Health Sciences Research Institute (ICVS), School of Health SciencesUniversity of MinhoBragaPortugal
  3. 3.ICVS/3B’s-PT Government Associate LaboratoryBraga/GuimarãesPortugal
  4. 4.Portuguese Oncology InstituteCoimbraPortugal
  5. 5.Molecular Oncology Research CenterSão PauloBrazil
  6. 6.Pathology DepartmentHospital BragaBragaPortugal
  7. 7.Laboratory of Medical Investigation (LIM) 14, Faculty of MedicineUniversity of Sao PauloSao PauloBrazil
  8. 8.Surgery Department, Coloproctology Unit Hospital BragaBragaPortugal

Personalised recommendations