Skip to main content

Advertisement

Log in

Choroidal imaging using optical coherence tomography: techniques and interpretations

  • Forefront Review
  • Organizer: Mineo Kondo, MD
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

The choroid is vascularized membranous tissue that supplies oxygen and nutrients to the photoreceptors and outer retina. Choroidal vessels underlying the retinal pigment epithelium are difficult to visualize by ophthalmoscopy and slit-lamp examinations. Optical coherence tomography (OCT) imaging made significant advancements in the last 2 decades; it allows visualization of the choroid and its vasculature. Enhanced-depth imaging techniques and swept-source OCT provide detailed choroidal images. A recent breakthrough, OCT angiography (OCTA), visualizes blood flow in the choriocapillaris. However, despite using OCTA, it is hard to visualize the choroidal vessel blood flow. In conventional structural OCT the choroidal vessel structure appears as a low-intensity objects. Image-processing techniques help obtain structural information about these vessels. Manual or automated segmentation of the choroid and binarization techniques enable evaluation of choroidal vessels. Viewing the three-dimensional choroidal vasculature is also possible using high-scan speed volumetric OCT. Unfortunately, although choroidal image analyses are possible using the images obtained by commercially available OCT, the built-in function that analyzes the choroidal vasculature may be insufficient to perform quantitative imaging analysis. Physicians must do that themselves. This review summarizes recent choroidal imaging processing techniques and explains the interpretation of the results for the benefit of imaging experts and ophthalmologists alike.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nickla DL, Wallman J. The multifunctional choroid. Prog Retin Eye Res. 2010;29:144–68.

    Article  PubMed  Google Scholar 

  2. Maruko I, Iida T, Oyamada H, Sugano Y, Saito M, Sekiryu T. Subfoveal choroidal thickness changes after intravitreal ranibizumab and photodynamic therapy for retinal angiomatous proliferation. Retina. 2015;35:648–54.

    Article  CAS  PubMed  Google Scholar 

  3. Koizumi H, Yamagishi T, Yamazaki T, Kinoshita S. Relationship between clinical characteristics of polypoidal choroidal vasculopathy and choroidal vascular hyperpermeability. Am J Ophthalmol. 2013;155:305 e1-313 e1.

    Article  Google Scholar 

  4. Nagaoka T, Kitaya N, Sugawara R, Yokota H, Mori F, Hikichi T, et al. Alteration of choroidal circulation in the foveal region in patients with type 2 diabetes. Br J Ophthalmol. 2004;88:1060–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ogasawara M, Maruko I, Sugano Y, Ojima A, Sekiryu T, Iida T. Retinal and choroidal thickness changes following intravitreal ranibizumab injection for exudative age-related macular degeneration. Nihon Ganka Gakkai Zasshi. 2012;116:643–9. (in Japanese).

    PubMed  Google Scholar 

  6. Mitamura Y, Enkhmaa T, Sano H, Niki M, Murao F, Egawa M, et al. Changes in choroidal structure following intravitreal aflibercept therapy for retinal vein occlusion. Br J Ophthalmol. 2021;105:704–10.

    Article  PubMed  Google Scholar 

  7. Maruko I, Iida T, Sugano Y, Oyamada H, Sekiryu T, Fujiwara T, et al. Subfoveal choroidal thickness after treatment of Vogt-Koyanagi-Harada disease. Retina. 2011;31:510–7.

    Article  PubMed  Google Scholar 

  8. Kogure K, David NJ, Yamanouchi U, Choromokos E. Infrared absorption angiography of the fundus circulation. Arch Ophthalmol. 1970;83:209–14.

    Article  CAS  PubMed  Google Scholar 

  9. Flower RW. Injection technique for indocyanine green and sodium fluorescein dye angiography of the eye. Invest Ophthalmol. 1973;12:881–95.

    CAS  PubMed  Google Scholar 

  10. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, et al. Optical coherence tomography. Science. 1991;254:1178–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Takahashi H, Kishi S. Optical coherence tomography images of spontaneous macular hole closure. Am J Ophthalmol. 1999;128:519–20.

    Article  CAS  PubMed  Google Scholar 

  12. Spaide RF, Koizumi H, Pozzoni MC. Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol. 2008;146:496–500.

    Article  PubMed  Google Scholar 

  13. Yasuno Y, Hong Y, Makita S, Yamanari M, Akiba M, Miura M, et al. In vivo high-contrast imaging of deep posterior eye by 1-microm swept source optical coherence tomography and scattering optical coherence angiography. Opt Express. 2007;15:6121–39.

    Article  PubMed  Google Scholar 

  14. Makita S, Hong Y, Yamanari M, Yatagai T, Yasuno Y. Optical coherence angiography. Opt Express. 2006;14:7821–40.

    Article  PubMed  Google Scholar 

  15. Wang RK, Hurst S. Mapping of cerebro-vascular blood perfusion in mice with skin and skull intact by optical micro-angiography at 1.3 mum wavelength. Opt Express. 2007;15:11402–12.

    Article  PubMed  Google Scholar 

  16. Srinath N, Patil A, Kumar VK, Jana S, Chhablani J, Richhariya A. Automated detection of choroid boundary and vessels in optical coherence tomography images. Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:166–9.

    CAS  PubMed  Google Scholar 

  17. Zhang L, Lee K, Niemeijer M, Mullins RF, Sonka M, Abramoff MD. Automated segmentation of the choroid from clinical SD-OCT. Invest Ophthalmol Vis Sci. 2012;53:7510–9.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sohrab M, Wu K, Fawzi AA. A pilot study of morphometric analysis of choroidal vasculature in vivo, using en face optical coherence tomography. PLoS One. 2012;7:e48631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tan CS, Cheong KX, Lim LW, Sadda SR. Comparison of macular choroidal thicknesses from swept source and spectral domain optical coherence tomography. Br J Ophthalmol. 2016;100:995–9.

    Article  PubMed  Google Scholar 

  20. Spaide RF, Fujimoto JG, Waheed NK, Sadda SR, Staurenghi G. Optical coherence tomography angiography. Prog Retin Eye Res. 2018;64:1–55.

    Article  PubMed  Google Scholar 

  21. Delaey C, Van De Voorde J. Regulatory mechanisms in the retinal and choroidal circulation. Ophthalmic Res. 2000;32:249–56.

    Article  CAS  PubMed  Google Scholar 

  22. Kutoglu T, Yalcin B, Kocabiyik N, Ozan H. Vortex veins: anatomic investigations on human eyes. Clin Anat. 2005;18:269–73.

    Article  PubMed  Google Scholar 

  23. Chandrasekera E, Wong EN, Sampson DM, Alonso-Caneiro D, Chen FK. Posterior choroidal stroma reduces accuracy of automated segmentation of outer choroidal boundary in swept source optical coherence tomography. Invest Ophthalmol Vis Sci. 2018;59:4404–12.

    Article  PubMed  Google Scholar 

  24. Hogan MJ. Ultrastructure of the choroid. Its role in the pathogenesis of chorioretinal disease. Trans Pac Coast Otoophthalmol Soc Annu Meet. 1961;42:61–87.

    CAS  PubMed  Google Scholar 

  25. Lejoyeux R, Atia R, Vupparaboina KK, Ibrahim MN, Suthaharan S, Sahel JA, et al. En-face analysis of short posterior ciliary arteries crossing the sclera to choroid using wide-field swept-source optical coherence tomography. Sci Rep. 2021;11:8732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jampol LM, Shankle J, Schroeder R, Tornambe P, Spaide RF, Hee MR. Diagnostic and therapeutic challenges. Retina. 2006;26:1072–6.

    Article  PubMed  Google Scholar 

  27. Margolis R, Mukkamala SK, Jampol LM, Spaide RF, Ober MD, Sorenson JA, et al. The expanded spectrum of focal choroidal excavation. Arch Ophthalmol. 2011;129:1320–5.

    Article  PubMed  Google Scholar 

  28. Querques G, Costanzo E, Miere A, Capuano V, Souied EH. Choroidal caverns: a novel optical coherence tomography finding in geographic atrophy. Invest Ophthalmol Vis Sci. 2016;57:2578–82.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sakurada Y, Leong BCS, Parikh R, Fragiotta S, Freund KB. Association between choroidal caverns and choroidal vascular hyperpermeability in eyes with pachychoroid diseases. Retina. 2018;38:1977–83.

    Article  PubMed  Google Scholar 

  30. Dolz-Marco R, Glover JP, Gal-Or O, Litts KM, Messinger JD, Zhang Y, et al. Choroidal and sub-retinal pigment epithelium caverns: multimodal imaging and correspondence with friedman lipid globules. Ophthalmology. 2018;125:1287–301.

    Article  PubMed  Google Scholar 

  31. Cheung CMG, Lee WK, Koizumi H, Dansingani K, Lai TYY, Freund KB. Pachychoroid disease. Eye (Lond). 2019;33:14–33.

    Article  Google Scholar 

  32. Linderman R, Salmon AE, Strampe M, Russillo M, Khan J, Carroll J. Assessing the accuracy of foveal avascular zone measurements using optical coherence tomography angiography: segmentation and scaling. Transl Vis Sci Technol. 2017;6:16.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zhou H, Dai Y, Shi Y, Russell JF, Lyu C, Noorikolouri J, et al. Age-related changes in choroidal thickness and the volume of vessels and stroma using swept-source oct and fully automated algorithms. Ophthalmol Retina. 2020;4:204–15.

    Article  PubMed  Google Scholar 

  34. Agrawal R, Gupta P, Tan KA, Cheung CMG, Wong TY, Cheng CY. Choroidal vascularity index as a measure of vascular status of the choroid: measurements in healthy eyes from a population-based study. Sci Rep. 2016;6:21090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sonoda S, Sakamoto T, Yamashita T, Uchino E, Kawano H, Yoshihara N, et al. Luminal and stromal areas of choroid determined by binarization method of optical coherence tomographic images. Am J Ophthalmol. 2015;159:1123-31.e1.

    Article  Google Scholar 

  36. Vupparaboina KK, Dansingani KK, Goud A, Rasheed MA, Jawed F, Jana S, et al. Quantitative shadow compensated optical coherence tomography of choroidal vasculature. Sci Rep. 2018;8:6461.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Girard MJ, Strouthidis NG, Ethier CR, Mari JM. Shadow removal and contrast enhancement in optical coherence tomography images of the human optic nerve head. Invest Ophthalmol Vis Sci. 2011;52:7738–48.

    Article  PubMed  Google Scholar 

  38. Rahman W, Chen FK, Yeoh J, Patel P, Tufail A, Da Cruz L. Repeatability of manual subfoveal choroidal thickness measurements in healthy subjects using the technique of enhanced depth imaging optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52:2267–71.

    Article  PubMed  Google Scholar 

  39. Mori Y, Miyake M, Hosoda Y, Uji A, Nakano E, Takahashi A, et al. Distribution of choroidal thickness and choroidal vessel dilation in healthy Japanese individuals: the nagahama study. Ophthalmol Sci. 2021;1:100033.

    Article  Google Scholar 

  40. Wei WB, Xu L, Jonas JB, Shao L, Du KF, Wang S, et al. Subfoveal choroidal thickness: the Beijing eye study. Ophthalmology. 2013;120:175–80.

    Article  PubMed  Google Scholar 

  41. Tan CSH, Cheong KX. Macular choroidal thicknesses in healthy adults—relationship with ocular and demographic factors. Invest Ophthalmol Vis Sci. 2014;55:6452–8.

    Article  PubMed  Google Scholar 

  42. Heirani M, Shandiz JH, Shojaei A, Narooie-Noori F. Choroidal thickness profile in normal iranian eyes with different refractive status by spectral-domain optical coherence tomography. J Curr Ophthalmol. 2020;32:58–68.

    PubMed  PubMed Central  Google Scholar 

  43. Ito Y, Ito M, Iwase T, Kataoka K, Yamada K, Yasuda S, et al. Prevalence of and factors associated with dilated choroidal vessels beneath the retinal pigment epithelium among the Japanese. Sci Rep. 2021;11:11278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Song Y, Tham YC, Chong C, Ong R, Fenner BJ, Cheong KX, et al. Patterns and determinants of choroidal thickness in a multiethnic asian population: the singapore epidemiology of eye diseases study. Ophthalmol Retina. 2021;5:458–67.

    Article  PubMed  Google Scholar 

  45. Endo H, Kase S, Saito M, Yokoi M, Takahashi M, Ishida S, et al. Choroidal Thickness in Diabetic Patients Without Diabetic Retinopathy: A Meta-analysis. Am J Ophthalmol. 2020;218:68–77.

    Article  PubMed  Google Scholar 

  46. Kinoshita T, Imaizumi H, Shimizu M, Mori J, Hatanaka A, Aoki S, et al. Systemic and Ocular Determinants of Choroidal Structures on Optical Coherence Tomography of Eyes with Diabetes and Diabetic Retinopathy. Sci Rep. 2019;9:16228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Usui S, Ikuno Y, Akiba M, Maruko I, Sekiryu T, Nishida K, et al. Circadian changes in subfoveal choroidal thickness and the relationship with circulatory factors in healthy subjects. Invest Ophthalmol Vis Sci. 2012;53:2300–7.

    Article  PubMed  Google Scholar 

  48. Kinoshita T, Mitamura Y, Shinomiya K, Egawa M, Iwata A, Fujihara A, et al. Diurnal variations in luminal and stromal areas of choroid in normal eyes. Br J Ophthalmol. 2017;101:360–4.

    PubMed  Google Scholar 

  49. Govetto A, Sarraf D, Figueroa MS, Pierro L, Ippolito M, Risser G, et al. Choroidal thickness in non-neovascular versus neovascular age-related macular degeneration: a fellow eye comparative study. Br J Ophthalmol. 2017;101:764–9.

    Article  PubMed  Google Scholar 

  50. Yamazaki T, Koizumi H, Yamagishi T, Kinoshita S. Subfoveal choroidal thickness in retinal angiomatous proliferation. Retina. 2014;34:1316–22.

    Article  PubMed  Google Scholar 

  51. Koizumi H, Yamagishi T, Yamazaki T, Kawasaki R, Kinoshita S. Subfoveal choroidal thickness in typical age-related macular degeneration and polypoidal choroidal vasculopathy. Graefes Arch Clin Exp Ophthalmol. 2011;249:1123–8.

    Article  PubMed  Google Scholar 

  52. Imamura Y, Fujiwara T, Spaide RF. Frequency of glaucoma in central serous chorioretinopathy: a case-control study. Retina. 2010;30:267–70.

    Article  PubMed  Google Scholar 

  53. Ellabban AA, Tsujikawa A, Matsumoto A, Ogino K, Hangai M, Ooto S, et al. Macular choroidal thickness and volume in eyes with angioid streaks measured by swept source optical coherence tomography. Am J Ophthalmol. 2012;153:1133-43 e1.

    Article  PubMed  Google Scholar 

  54. Miyake M, Tsujikawa A, Yamashiro K, Ooto S, Oishi A, Tamura H, et al. Choroidal neovascularization in eyes with choroidal vascular hyperpermeability. Invest Ophthalmol Vis Sci. 2014;55:3223–30.

    Article  PubMed  Google Scholar 

  55. Yoneyama S, Sakurada Y, Kikushima W, Sugiyama A, Tanabe N, Mabuchi F, et al. Genetic factors associated with choroidal vascular hyperpermeability and subfoveal choroidal thickness in polypoidal choroidal vasculopathy. Retina. 2016;36:1535–41.

    Article  PubMed  Google Scholar 

  56. Hata M, Yamashiro K, Ooto S, Oishi A, Tamura H, Miyata M, et al. Intraocular vascular endothelial growth factor levels in pachychoroid neovasculopathy and neovascular age-related macular degeneration. Invest Ophthalmol Vis Sci. 2017;58:292–98.

    Article  CAS  PubMed  Google Scholar 

  57. Fukuda Y, Sakurada Y, Yoneyama S, Kikushima W, Sugiyama A, Matsubara M, et al. Clinical and genetic characteristics of pachydrusen in patients with exudative age-related macular degeneration. Sci Rep. 2019;9:11906.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Cheung CMG, Gan A, Yanagi Y, Wong TY, Spaide R. Association between choroidal thickness and drusen subtypes in age-related macular degeneration. Ophthalmol Retina. 2018;2:1196–205.

    Article  PubMed  Google Scholar 

  59. Spaide RF. Disease expression in nonexudative age-related macular degeneration varies with choroidal thickness. Retina. 2018;38:708–16.

    Article  PubMed  Google Scholar 

  60. Querques G, Querques L, Forte R, Massamba N, Coscas F, Souied EH. Choroidal changes associated with reticular pseudodrusen. Invest Ophthalmol Vis Sci. 2012;53:1258–63.

    Article  PubMed  Google Scholar 

  61. Ueda-Arakawa N, Ooto S, Ellabban AA, Takahashi A, Oishi A, Tamura H, et al. Macular choroidal thickness and volume of eyes with reticular pseudodrusen using swept-source optical coherence tomography. Am J Ophthalmol. 2014;157:994–1004.

    Article  PubMed  Google Scholar 

  62. Yoneyama S, Sakurada Y, Mabuchi F, Imasawa M, Sugiyama A, Kubota T, et al. Genetic and clinical factors associated with reticular pseudodrusen in exudative age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol. 2014;252:1435–41.

    Article  CAS  PubMed  Google Scholar 

  63. Adhi M, Lau M, Liang MC, Waheed NK, Duker JS. Analysis of the thickness and vascular layers of the choroid in eyes with geographic atrophy using spectral-domain optical coherence tomography. Retina. 2014;34:306–12.

    Article  PubMed  Google Scholar 

  64. Koizumi H, Kano M, Yamamoto A, Saito M, Maruko I, Sekiryu T, et al. Subfoveal choroidal thickness during aflibercept therapy for neovascular age-related macular degeneration: twelve-month results. Ophthalmology. 2016;123:617–24.

    Article  PubMed  Google Scholar 

  65. Rahman W, Chen FK, Yeoh J, da Cruz L. Enhanced depth imaging of the choroid in patients with neovascular age-related macular degeneration treated with anti-VEGF therapy versus untreated patients. Graefes Arch Clin Exp Ophthalmol. 2013;251:1483–8.

    Article  CAS  PubMed  Google Scholar 

  66. Sonoda S, Sakamoto T, Otsuka H, Yoshinaga N, Yamashita T, Ki IY, et al. Responsiveness of eyes with polypoidal choroidal vasculopathy with choroidal hyperpermeability to intravitreal ranibizumab. BMC Ophthalmol. 2013;13:43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Lains I, Figueira J, Santos AR, Baltar A, Costa M, Nunes S, et al. Choroidal thickness in diabetic retinopathy: the influence of antiangiogenic therapy. Retina. 2014;34:1199–207.

    Article  CAS  PubMed  Google Scholar 

  68. Maruko I, Iida T, Sugano Y, Furuta M, Sekiryu T. One-year choroidal thickness results after photodynamic therapy for central serous chorioretinopathy. Retina. 2011;31:1921–7.

    Article  PubMed  Google Scholar 

  69. Maehara H, Sekiryu T, Sugano Y, Maruko I. Choroidal thickness changes in acute zonal occult outer retinopathy. Retina. 2019;39:202–9.

    Article  PubMed  Google Scholar 

  70. Maruko I, Iida T, Sugano Y, Oyamada H, Akiba M, Sekiryu T. Morphologic analysis in pathologic myopia using high-penetration optical coherence tomography. Invest Ophthalmol Vis Sci. 2012;53:3834–8.

    Article  PubMed  Google Scholar 

  71. Murakami Y, Funatsu J, Nakatake S, Fujiwara K, Tachibana T, Koyanagi Y, et al. Relations among foveal blood flow, retinal-choroidal structure, and visual function in retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2018;59:1134–43.

    Article  CAS  PubMed  Google Scholar 

  72. Hirashima T, Miyata M, Ishihara K, Hasegawa T, Sugahara M, Ogino K, et al. Choroidal vasculature in bietti crystalline dystrophy with cyp4v2 mutations and in retinitis pigmentosa with eys mutations. Invest Ophthalmol Vis Sci. 2017;58:3871–8.

    Article  PubMed  Google Scholar 

  73. Li XQ, Heegaard S, Kiilgaard JF, Munch IC, Larsen M. Enhanced-Depth Imaging Optical Coherence Tomography of the Human Choroid In Vivo Compared With Histology After Enucleation. Invest Ophthalmol Vis Sci. 2016;57:371–6.

    Article  Google Scholar 

  74. Agrawal R, Wei X, Goud A, Vupparaboina KK, Jana S, Chhablani J. Influence of scanning area on choroidal vascularity index measurement using optical coherence tomography. Acta Ophthalmol. 2017;95:e770–5.

    Article  PubMed  Google Scholar 

  75. Branchini LA, Adhi M, Regatieri CV, Nandakumar N, Liu JJ, Laver N, et al. Analysis of choroidal morphologic features and vasculature in healthy eyes using spectral-domain optical coherence tomography. Ophthalmology. 2013;120:1901–8.

    Article  PubMed  Google Scholar 

  76. Agrawal R, Seen S, Vaishnavi S, Vupparaboina KK, Goud A, Rasheed MA, et al. Choroidal vascularity index using swept-source and spectral-domain optical coherence tomography: a comparative study. Ophthalmic Surg Lasers Imaging Retina. 2019;50:e26–32.

    Article  PubMed  Google Scholar 

  77. Giannaccare G, Pellegrini M, Sebastiani S, Bernabei F, Moscardelli F, Iovino C, et al. Choroidal vascularity index quantification in geographic atrophy using binarization of enhanced-depth imaging optical coherence tomographic scans. Retina. 2020;40:960–5.

    Article  PubMed  Google Scholar 

  78. Sonoda S, Sakamoto T, Yamashita T, Shirasawa M, Uchino E, Terasaki H, et al. Choroidal structure in normal eyes and after photodynamic therapy determined by binarization of optical coherence tomographic images. Invest Ophthalmol Vis Sci. 2014;55:3893–9.

    Article  PubMed  Google Scholar 

  79. Pellegrini M, Bernabei F, Mercanti A, Sebastiani S, Peiretti E, Iovino C, et al. Short-term choroidal vascular changes after aflibercept therapy for neovascular age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol. 2021;259:911–8.

    Article  CAS  PubMed  Google Scholar 

  80. Velaga SB, Nittala MG, Vupparaboina KK, Jana S, Chhablani J, Haines J, et al. Choroidal vascularity index and choroidal thickness in eyes with reticular pseudodrusen. Retina. 2020;40:612–7.

    Article  PubMed  Google Scholar 

  81. Agrawal R, Chhablani J, Tan KA, Shah S, Sarvaiya C, Banker A. Choroidal Vascularity Index in Central Serous Chorioretinopathy. Retina. 2016;36:1646–51.

    Article  PubMed  Google Scholar 

  82. Kim M, Ha MJ, Choi SY, Park YH. Choroidal vascularity index in type-2 diabetes analyzed by swept-source optical coherence tomography. Sci Rep. 2018;8:70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Kim JT, Park N. Changes in choroidal vascular parameters following pan-retinal photocoagulation using swept-source optical coherence tomography. Graefes Arch Clin Exp Ophthalmol. 2020;258:39–47.

    Article  CAS  PubMed  Google Scholar 

  84. Kawano H, Sonoda S, Yamashita T, Maruko I, Iida T, Sakamoto T. Relative changes in luminal and stromal areas of choroid determined by binarization of EDI-OCT images in eyes with Vogt-Koyanagi-Harada disease after treatment. Graefes Arch Clin Exp Ophthalmol. 2016;254:421–6.

    Article  PubMed  Google Scholar 

  85. Jaisankar D, Raman R, Sharma HR, Khandelwal N, Bhende M, Agrawal R, et al. choroidal and retinal anatomical responses following systemic corticosteroid therapy in vogt-koyanagi-harada disease using swept-source optical coherence tomography. Ocul Immunol Inflamm. 2019;27:235–43.

    Article  PubMed  Google Scholar 

  86. Tan R, Agrawal R, Taduru S, Gupta A, Vupparaboina K, Chhablani J. Choroidal vascularity index in retinitis pigmentosa: an OCT study. Ophthalmic Surg Lasers Imaging Retina. 2018;49:191–7.

    Article  PubMed  Google Scholar 

  87. Egawa M, Mitamura Y, Niki M, Sano H, Miura G, Chiba A, et al. Correlations between choroidal structures and visual functions in eyes with retinitis pigmentosa. Retina. 2019;39:2399–409.

    Article  PubMed  Google Scholar 

  88. Kawano H, Sonoda S, Saito S, Terasaki H, Sakamoto T. Choroidal Structure Altered by Degeneration of Retina in Eyes with Retinitis Pigmentosa. Retina. 2017;37:2175–82.

    Article  PubMed  Google Scholar 

  89. Kajic V, Esmaeelpour M, Glittenberg C, Kraus MF, Honegger J, Othara R, et al. Automated three-dimensional choroidal vessel segmentation of 3D 1060 nm OCT retinal data. Biomed Opt Express. 2013;4:134–50.

    Article  PubMed  Google Scholar 

  90. Uppugunduri SR, Rasheed MA, Richhariya A, Jana S, Chhablani J, Vupparaboina KK. Automated quantification of Haller’s layer in choroid using swept-source optical coherence tomography. PLoS One. 2018;13:e0193324.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Shiihara H, Sonoda S, Terasaki H, Kakiuchi N, Shinohara Y, Tomita M, et al. Quantification of vessels of Haller’s layer based on en-face OCT images. Retina. 2021;41:2148–56.

    Article  CAS  PubMed  Google Scholar 

  92. Shiihara H, Sonoda S, Terasaki H, Kakiuchi N, Yamashita T, Uchino E, et al. Quantitative analyses of diameter and running pattern of choroidal vessels in central serous chorioretinopathy by en face images. Sci Rep. 2020;10:9591.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Sonoda S, Terasaki H, Kakiuchi N, Shiihara H, Sakoguchi T, Tomita M, et al. Kago-Eye2 software for semi-automated segmentation of subfoveal choroid of optical coherence tomographic images. Jpn J Ophthalmol. 2019;63:82–9.

    Article  CAS  PubMed  Google Scholar 

  94. Wakatsuki Y, Shinojima A, Kawamura A, Yuzawa M. Correlation of aging and segmental choroidal thickness measurement using swept source optical coherence tomography in healthy eyes. PLoS One. 2015;10:e0144156.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Zhao J, Wang YX, Zhang Q, Wei WB, Xu L, Jonas JB. Macular choroidal small-vessel layer, sattler’s layer and haller’s layer thicknesses: the Beijing Eye Study. Sci Rep. 2018;8:4411.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Legocki AT, Adhi M, Weber ML, Duker JS. Choroidal morphology and vascular analysis in eyes with neovascular age-related macular degeneration using spectral-domain optical coherence tomography. Ophthalmic Surg Lasers Imaging Retina. 2016;47:618–25.

    Article  PubMed  Google Scholar 

  97. Alshareef RA, Khuthaila MK, Januwada M, Goud A, Ferrara D, Chhablani J. Choroidal vascular analysis in myopic eyes: evidence of foveal medium vessel layer thinning. Int J Retina Vitreous. 2017;3:28.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Hanumunthadu D, van Dijk EHC, Dumpala S, Rajesh B, Jabeen A, Jabeen A, et al. Evaluation of choroidal layer thickness in central serous chorioretinopathy. J Ophthalmic Vis Res. 2019;14:164–70.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Adhi M, Ferrara D, Mullins RF, Baumal CR, Mohler KJ, Kraus MF, et al. Characterization of choroidal layers in normal aging eyes using enface swept-source optical coherence tomography. PLoS One. 2015;10:e0133080.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Motaghiannezam R, Schwartz DM, Fraser SE. In vivo human choroidal vascular pattern visualization using high-speed swept-source optical coherence tomography at 1060 nm. Invest Ophthalmol Vis Sci. 2012;53:2337–48.

    Article  PubMed  Google Scholar 

  101. Matsumoto H, Hoshino J, Mukai R, Nakamura K, Kikuchi Y, Kishi S, et al. Vortex vein anastomosis at the watershed in pachychoroid spectrum diseases. Ophthalmol retina. 2020;4:938–45.

    Article  PubMed  Google Scholar 

  102. Ferrara D, Mohler KJ, Waheed N, Adhi M, Liu JJ, Grulkowski I, et al. En face enhanced-depth swept-source optical coherence tomography features of chronic central serous chorioretinopathy. Ophthalmology. 2014;121:719–26.

    Article  PubMed  Google Scholar 

  103. Kuroda Y, Ooto S, Yamashiro K, Oishi A, Nakanishi H, Tamura H, et al. Increased choroidal vascularity in central serous chorioretinopathy quantified using swept-source optical coherence tomography. Am J Ophthalmol. 2016;169:199–207.

    Article  PubMed  Google Scholar 

  104. Shiihara H, Sonoda S, Terasaki H, Kakiuchi N, Shinohara Y, Tomita M, et al. Automated segmentation of en face choroidal images obtained by optical coherent tomography by machine learning. Jpn J Ophthalmol. 2018;62:643–51.

    Article  PubMed  Google Scholar 

  105. Hirata M, Tsujikawa A, Matsumoto A, Hangai M, Ooto S, Yamashiro K, et al. Macular choroidal thickness and volume in normal subjects measured by swept-source optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52:4971–8.

    Article  PubMed  Google Scholar 

  106. Alonso-Caneiro D, Read SA, Collins MJ. Automatic segmentation of choroidal thickness in optical coherence tomography. Biomed Opt Express. 2013;4:2795–812.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Hu Z, Wu X, Ouyang Y, Ouyang Y, Sadda SR. Semiautomated segmentation of the choroid in spectral-domain optical coherence tomography volume scans. Invest Ophthalmol Vis Sci. 2013;54:1722–9.

    Article  PubMed  Google Scholar 

  108. Lu H, Boonarpha N, Kwong MT, Zheng Y. Automated segmentation of the choroid in retinal optical coherence tomography images. Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:5869–72.

    PubMed  Google Scholar 

  109. Tian J, Marziliano P, Baskaran M, Tun TA, Aung T. Automatic segmentation of the choroid in enhanced depth imaging optical coherence tomography images. Biomed Opt Express. 2013;4:397–411.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Zhang L, Buitendijk GH, Lee K, Sonka M, Springelkamp H, Hofman A, et al. Validity of automated choroidal segmentation in SS-OCT and SD-OCT. Invest Ophthalmol Vis Sci. 2015;56:3202–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Mazzaferri J, Beaton L, Hounye G, Sayah DN, Costantino S. Open-source algorithm for automatic choroid segmentation of OCT volume reconstructions. Sci Rep. 2017;7:42112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kajic V, Esmaeelpour M, Povazay B, Marshall D, Rosin PL, Drexler W. Automated choroidal segmentation of 1060 nm OCT in healthy and pathologic eyes using a statistical model. Biomed Opt Express. 2012;3:86–103.

    Article  PubMed  Google Scholar 

  113. Vupparaboina KK, Nizampatnam S, Chhablani J, Richhariya A, Jana S. Automated estimation of choroidal thickness distribution and volume based on OCT images of posterior visual section. Comput Med Imaging Graph. 2015;46 Pt 3:315–27.

    Article  PubMed  Google Scholar 

  114. Tsuji S, Sekiryu T, Sugano Y, Ojima A, Kasai A, Okamoto M, et al. Semantic segmentation of the choroid in swept source optical coherence tomography images for volumetrics. Sci Rep. 2020;10:1088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Maloca PM, Lee AY, de Carvalho ER, Okada M, Fasler K, Leung I, et al. Validation of automated artificial intelligence segmentation of optical coherence tomography images. PLoS One. 2019;14:e0220063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Masood S, Fang R, Li P, Li H, Sheng B, Mathavan A, et al. Automatic choroid layer segmentation from optical coherence tomography images using deep learning. Sci Rep. 2019;9:3058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Barteselli G, Chhablani J, El-Emam S, Wang H, Chuang J, Kozak I, et al. Choroidal volume variations with age, axial length, and sex in healthy subjects: a three-dimensional analysis. Ophthalmology. 2012;119:2572–8.

    Article  PubMed  Google Scholar 

  118. Capuano V, Souied EH, Miere A, Jung C, Costanzo E, Querques G. Choroidal maps in non-exudative age-related macular degeneration. Br J Ophthalmol. 2016;100:677–82.

    Article  PubMed  Google Scholar 

  119. Razavi S, Souied EH, Darvizeh F, Querques G. Assessment of choroidal topographic changes by swept-source optical coherence tomography after intravitreal ranibizumab for exudative age-related macular degeneration. Am J Ophthalmol. 2015;160:1006–13.

    Article  CAS  PubMed  Google Scholar 

  120. Goud A, Singh SR, Sahoo NK, Rasheed MA, Vupparaboina KK, Ankireddy S, et al. New insights on choroidal vascularity: A comprehensive topographic approach. Invest Ophthalmol Vis Sci. 2019;60:3563–9.

    Article  PubMed  Google Scholar 

  121. Yang J, Wang E, Yuan M, Chen Y. Three-dimensional choroidal vascularity index in acute central serous chorioretinopathy using swept-source optical coherence tomography. Graefes Arch Clin Exp Ophthalmol. 2020;258:241–7.

    Article  PubMed  Google Scholar 

  122. Sekiryu T, Sugano Y, Ojima A, Mori T, Furuta M, Okamoto M, et al. Hybrid three-dimensional visualization of choroidal vasculature imaged by swept-source optical coherence tomography. Transl Vis Sci Technol. 2019;8:31.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Puyo L, Paques M, Fink M, Sahel JA, Atlan M. Waveform analysis of human retinal and choroidal blood flow with laser Doppler holography. Biomed Opt Express. 2019;10:4942–63.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuju Sekiryu.

Ethics declarations

Conflicts of interest

T. Sekiryu, None.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Organizer: Mineo Kondo, MD

Corresponding author: Tetsuju Sekiryu

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sekiryu, T. Choroidal imaging using optical coherence tomography: techniques and interpretations. Jpn J Ophthalmol 66, 213–226 (2022). https://doi.org/10.1007/s10384-022-00902-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-022-00902-7

Keywords

Navigation