Skip to main content

Advertisement

Log in

Significant correlations between focal photopic negative response and focal visual sensitivity and ganglion cell complex thickness in glaucomatous eyes

  • Clinical Investigation
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To determine whether there are significant correlations between the focal photopic negative response (PhNR), the focal visual sensitivity and the ganglion cell complex (GCC) thickness in glaucomatous eyes.

Study design

Single-center observational study.

Methods

Fifty-two eyes of 52 patients (71.4 ± 9.42 years) with clinically diagnosed open angle glaucoma were studied. Thirty-six age-matched normal subjects served as controls. The focal PhNR of the focal macular electroretinograms (fmERGs) were elicited by a 15° circular, a superior semicircular or an inferior semicircular stimulus centered on the fovea. The thickness of the GCC was measured in the corresponding retinal areas in the spectral-domain optical coherence tomographic images. The visual sensitivities (dB) were measured by microperimetry at the retinal area where the fmERGs were elicited and were converted to liner values (1/Lambert).

Results

The focal PhNR amplitudes were significantly correlated with the visual sensitivities of the full-circle (R = 0.532), the superior (R = 0.530) and inferior (R = 0.526) semicircular responses (P < 0.0001). The GCC thickness was correlated with the visual sensitivities in the same areas with stronger correlations (R = 0.700, 0.759 and 0.650, respectively; P < 0.0001). The focal PhNR amplitudes were proportionally reduced with the thinning of the GCC thickness (R = 0.494, 0.518 and 0.511, respectively; P < 0.0001).

Conclusions

The significant correlations between the focal PhNR amplitudes, the focal visual sensitivities and the GCC thickness indicate that these may be good biomarkers to track the changes in the physiology and anatomy of the macular area in glaucomatous eyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Viswanathan S, Frishman LJ, Robson JG, Harwerth RS, Smith EL 3rd. The photopic negative response of the macaque electroretinogram: reduction by experimental glaucoma. Invest Ophthalmol Vis Sci. 1999;40:1124–36.

    CAS  PubMed  Google Scholar 

  2. Viswanathan S, Frishman LJ, Robson JG, Walters JW. The photopic negative response of the flash electroretinogram in primary open angle glaucoma. Invest Ophthalmol Vis Sci. 2001;42:514–22.

    CAS  PubMed  Google Scholar 

  3. Gotoh Y, Machida S, Tazawa Y. Selective loss of the photopic negative response in patients with optic nerve atrophy. Arch Ophthalmol. 2004;122:341–6.

    PubMed  Google Scholar 

  4. Machida S, Gotoh Y, Tanaka M, Tazawa Y. Predominant loss of the photopic negative response in central retinal artery occlusion. Am J Ophthalmol. 2004;137:938–40.

    PubMed  Google Scholar 

  5. Rangaswamy NV, Frishman LJ, Dorotheo EU, Schiffman JS, Bahrani HM, Tang RA. Photopic ERGs in patients with optic neuropathies: comparison with primate ERGs after pharmacologic blockade of inner retina. Invest Ophthalmol Vis Sci. 2004;45:3827–37.

    PubMed  Google Scholar 

  6. Miyata K, Nakamura M, Kondo M, Lin J, Ueno S, Miyake Y, et al. Reduction of oscillatory potentials and photopic negative response in patients with autosomal dominant optic atrophy with OPA1 mutations. Invest Ophthalmol Vis Sci. 2007;48:820–4.

    PubMed  Google Scholar 

  7. Ueno S, Kondo M, Piao CH, Ikenoya K, Miyake Y, Terasaki H. Selective amplitude reduction of the PhNR after macular hole surgery: ganglion cell damage related to ICG-assisted ILM peeling and gas tamponade. Invest Ophthalmol Vis Sci. 2006;47:3545–9.

    PubMed  Google Scholar 

  8. Chen H, Wu D, Huang S, Yan H. The photopic negative response of the flash electroretinogram in retinal vein occlusion. Doc Ophthalmol. 2006;113:53–9.

    PubMed  Google Scholar 

  9. Kizawa J, Machida S, Kobayashi T, Gotoh Y, Kurosaka D. Changes of oscillatory potentials and photopic negative response in patients with early diabetic retinopathy. Jpn J Ophthalmol. 2006;50:367–73.

    PubMed  Google Scholar 

  10. Moon CH, Hwang SC, Ohn YH, Park TK. The time course of visual field recovery and changes of retinal ganglion cells after optic chiasmal decompression. Invest Ophthalmol Vis Sci. 2011;52:7966–73.

    PubMed  Google Scholar 

  11. Machida S, Gotoh Y, Toba Y, Ohtaki A, Kaneko M, Kurosaka D. Correlation between photopic negative response and retinal nerve fiber layer thickness and optic disc topography in glaucomatous eyes. Invest Ophthalmol Vis Sci. 2008;49:2201–7.

    PubMed  Google Scholar 

  12. Tamada K, Machida S, Yokoyama D, Kurosaka D. Photopic negative response of full-field and focal macular electroretinograms in patients with optic nerve atrophy. Jpn J Ophthalmol. 2009;53:608–14.

    PubMed  Google Scholar 

  13. Moon CH, Hwang SC, Kim BT, Ohn YH, Park TK. Visual prognostic value of optical coherence tomography and photopic negative response in chiasmal compression. Invest Ophthalmol Vis Sci. 2011;52:8527–33.

    PubMed  Google Scholar 

  14. Wang J, Cheng H, Hu YS, Tang RA, Frishman LJ. The photopic negative response of the flash electroretinogram in multiple sclerosis. Invest Ophthalmol Vis Sci. 2012;53:1315–23.

    PubMed  PubMed Central  Google Scholar 

  15. Machida S. Clinical applications of the photopic negative response to optic nerve and retinal diseases. J Ophthalmol. 2012;2012: 397178. https://doi.org/10.1155/2012/397178.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Miyake Y, Yanagida K, Kondo K, Ota I. Subjective scotometry and recording of local electroretinogram and visual evoked response. System with television monitor of the fundus. Jpn J Ophthalmol. 1981;25:439–48.

    Google Scholar 

  17. Miyake Y. Studies of local macular ERG. Nippon Ganka Gakkai Zassh. 1988;92:1419–49 (in Japanese).

    CAS  Google Scholar 

  18. Machida S, Toba Y, Ohtaki A, Gotoh Y, Kaneko M, Kurosaka D. Photopic negative response of focal electroretinograms in glaucomatous eyes. Invest Ophthalmol Vis Sci. 2008;49:5636–44.

    PubMed  Google Scholar 

  19. Kurimoto Y, Kondo M, Ueno S, Sakai T, Machida S, Terasaki H. Asymmetry of focal macular photopic negative responses (PhNRs) in monkeys. Exp Eye Res. 2009;88:92–8.

    CAS  PubMed  Google Scholar 

  20. Nakamura H, Hangai M, Mori S, Hirose F, Yoshimura N. Hemispherical focal macular photopic negative response and macular inner retinal thickness in open-angle glaucoma. Am J Ophthalmol. 2011;151:494–506.

    PubMed  Google Scholar 

  21. Tamada K, Machida S, Oikawa T, Miyamoto H, Nishimura T, Kurosaka D. Correlation between photopic negative response of focal electroretinograms and local loss of retinal neurons in glaucoma. Curr Eye Res. 2010;35:155–64.

    PubMed  Google Scholar 

  22. Machida S, Kaneko M, Kurosaka D. Regional variations in correlation between photopic negative response of focal electroretinograms and ganglion cell complex in glaucoma. Curr Eye Res. 2015;40:439–49.

    CAS  PubMed  Google Scholar 

  23. Kaneko M, Machida S, Hoshi Y, Kurosaka D. Alterations of photopic negative response of multifocal electroretinogram in patients with glaucoma. Curr Eye Res. 2015;40:77–86.

    CAS  PubMed  Google Scholar 

  24. Quigley HA, Green WR. The histology of human glaucoma cupping and optic nerve damage: clinicopathologic correlation in 21 eyes. Ophthalmology. 1979;86:1803–30.

    CAS  PubMed  Google Scholar 

  25. Quigley HA, Dunkelberger GR, Green WR. Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol. 1989;107:453–64.

    CAS  PubMed  Google Scholar 

  26. Colotto A, Falsini B, Salgarello T, Iarossi G, Galan ME, Scullica L. Photopic negative response of the human ERG: losses associated with glaucomatous damage. Invest Ophthalmol Vis Sci. 2000;41:2205–11.

    CAS  PubMed  Google Scholar 

  27. Machida S, Tamada K, Oikawa T, Yokoyama D, Kaneko M, Kurosaka D. Sensitivity and specificity of photopic negative response of focal electoretinogram to detect glaucomatous eyes. Br J Ophthalmol. 2010;94:202–8.

    CAS  PubMed  Google Scholar 

  28. Machida S, Tamada K, Oikawa T, Gotoh Y, Nishimura T, Kaneko M, et al. Comparison of photopic negative response of full-field and focal electroretinograms in detecting glaucomatous eyes. J Ophthalmol. 2011;2011:564131.

    PubMed  Google Scholar 

  29. Rao HL, Januwada M, Hussain RS, Pillutla LN, Begum VU, Chaitanya A, et al. Comparing the structure-function relationship at the macula with standard automated perimetry and microperimetry. Invest Ophthalmol Vis Sci. 2015;56:8063–8.

    CAS  PubMed  Google Scholar 

  30. Harwerth RS, Carter-Dawson L, Shen F, Smith EL 3rd, Crawford ML. Ganglion cell losses underlying visual field defects from experimental glaucoma. Invest Ophthalmol Vis Sci. 1999;40:2242–50.

    CAS  PubMed  Google Scholar 

  31. Harwerth RS, Carter-Dawson L, Smith EL 3rd, Barnes G, Holt WF, Crawford ML. Neural losses correlated with visual losses in clinical perimetry. Invest Ophthalmol Vis Sci. 2004;45:3152–60.

    PubMed  Google Scholar 

  32. Harwerth RS, Quigley HA. Visual field defects and retinal ganglion cell losses in patients with glaucoma. Arch Ophthalmol. 2006;124:853–9.

    PubMed  PubMed Central  Google Scholar 

  33. Harwerth RS, Vilupuru AS, Rangaswamy NV, Smith EL 3rd. The relationship between nerve fiber layer and perimetry measurements. Invest Ophthalmol Vis Sci. 2007;48:763–73.

    PubMed  Google Scholar 

  34. Hood DC, Greenstein VC, Odel JG, Zhang X, Ritch R, Liebmann JM, et al. Visual field defects and multifocal visual evoked potentials: evidence of a linear relationship. Arch Ophthalmol. 2002;120:1672–81.

    PubMed  Google Scholar 

  35. Hood DC, Anderson SC, Wall M, Kardon RH. Structure versus function in glaucoma: an application of a linear model. Invest Ophthalmol Vis Sci. 2007;48:3662–8.

    PubMed  Google Scholar 

  36. Hood DC, Kardon RH. A framework for comparing structural and functional measures of glaucomatous damage. Prog Retin Eye Res. 2007;26:688–710.

    PubMed  PubMed Central  Google Scholar 

  37. Scuderi G, Fragiotta S, Scuderi L, Iodice CM, Perdicchi A. Ganglion cell complex analysis in glaucoma patients: what can it tell us? Eye Brain. 2020;12:33–44.

    PubMed  PubMed Central  Google Scholar 

  38. Frishman LJ. Origin of the electroretinogram. In: Heckenlively JR, Arden GB, editors. Principles and practice of clinical electrophysiology of vision. 2nd ed. Cambridge: Massachusetts Institute of Technology; 2006. p. 139–83.

    Google Scholar 

  39. Viswanathan S, Frishman LJ. Evidence that negative potentials in the photopic electroretinograms of cats and primates depend upon spiking activity of retinal ganglion cell axons. Soc Neurosci Abstr. 1997;23:1024.

    Google Scholar 

  40. Tanihara H, Hangai M, Sawaguchi S, Abe H, Kageyama M, Nakazawa F, et al. Up-regulation of glial fibrillary acidic protein in the retina of primate eyes with experimental glaucoma. Arch Ophthalmol. 1997;115:752–6.

    CAS  PubMed  Google Scholar 

  41. Machida S, Kondo M, Jamison JA, Khan NW, Kononen LT, Sugawara T, et al. P23H rhodopsin transgenic rat: correlation of retinal function with histopathology. Invest Ophthalmol Vis Sci. 2000;41:3200–9.

    CAS  PubMed  Google Scholar 

  42. Hood DC, Benimoff NI, Greenstein VC. The response range of the blue-cone pathways: a source of vulnerability to disease. Invest Ophthalmol Vis Sci. 1984;25:864–7.

    CAS  PubMed  Google Scholar 

  43. Raza AS, Cho J, de Moraes CG, Wang M, Zhang X, Kardon RH, et al. Retinal ganglion cell layer thickness and local visual field sensitivity in glaucoma. Arch Ophthalmol. 2011;129:1529–36.

    PubMed  PubMed Central  Google Scholar 

  44. Hood DC, Raza AS, de Moraes CG, Odel JG, Greenstein VC, Liebmann JM, et al. Initial arcuate defects within the central 10 degrees in glaucoma. Invest Ophthalmol Vis Sci. 2011;52:940–6.

    PubMed  PubMed Central  Google Scholar 

  45. Turpin A, Chen S, Sepulveda JA, McKendrick AM. Customizing structure-function displacements in the macula for individual differences. Invest Ophthalmol Vis Sci. 2015;56:5984–9.

    PubMed  Google Scholar 

  46. Frishman L, Sustar M, Kremers J, McAnany JJ, Sarossy M, Tzekov R, et al. ISCEV extended protocol for the photopic negative response (PhNR) of the full-field electroretinogram. Doc Ophthalmol. 2018;136:207–11.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by JSPS KAKENHI Grant Number 18K09420 (SM). We thank Professor Emeritus Duco Hamasaki of the Bascom Palmer Eye Institute for discussions and editing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeki Machida.

Ethics declarations

Conflicts of interest

M. Ishizuka, None; S. Machida, None; Y. Hara, None; A. Tada, None; S. Ebihara, None; M. Gonmori, None; T. Nishimura, None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Corresponding author: Shigeki Machida

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishizuka, M., Machida, S., Hara, Y. et al. Significant correlations between focal photopic negative response and focal visual sensitivity and ganglion cell complex thickness in glaucomatous eyes. Jpn J Ophthalmol 66, 41–51 (2022). https://doi.org/10.1007/s10384-021-00886-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-021-00886-w

Keywords

Navigation