Skip to main content

Risk factors for failure of resolving optic disc pit maculopathy after primary vitrectomy without laser photocoagulation

Abstract

Purpose

To determine factors significantly correlated with the failure of macular reattachment by pars plana vitrectomy (PPV) without laser photocoagulation of the optic disc margin to treat optic disc pit (ODP) maculopathy.

Design

Retrospective, interventional case series.

Methods

We reviewed the medical records of 35 consecutive patients with ODP maculopathy who underwent PPV without laser photocoagulation. PPV with the creation of a posterior vitreous detachment (PVD) was performed in 34 eyes. An epiretinal membrane and internal limiting membrane present in the other eye with a PVD were removed. Patients were followed for 12–193 months (mean 58 months) after surgery. The main outcome measures were the postoperative rate of retinal reattachment and best-corrected visual acuity. The preoperative clinical characteristics of the successful cases were compared to those of the unsuccessful cases.

Results

A complete retinal reattachment was attained in 31 of 35 eyes and it required about one year. The 4 other eyes that did not achieve a macular reattachment after the primary PPV underwent additional therapies. The factors that were significantly associated with a failure of a retinal reattachment after primary PPV were the presence of a retinal detachment connected to the optic disc (P < 0.001) and the presence of preoperative headaches (P = 0.030).

Conclusions

Clinicians should be aware that the presence of a preoperative macular detachment connected to the optic disc margin and preoperative headaches are indicators for an unsuccessful outcome of PPV without laser photocoagulation in eyes with ODP maculopathy.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Kranenburg EW. Crater-like holes in the optic disc and central serous retinopathy. Arch Ophthalmol. 1960;64:912–24.

    CAS  Article  Google Scholar 

  2. 2.

    Brown GC, Shields JA, Goldberg RE. Congenital pits of the nerve head: II. Clin Stud Hum Ophthalmol. 1980;87:51–65.

    CAS  Google Scholar 

  3. 3.

    Sobol WM, Blodi CF, Folk JC, Weingeist TA. Long-term visual outcome in patients with optic nerve pit and serous retinal detachment of the macula. Ophthalmology. 1990;97:1539–42.

    CAS  Article  Google Scholar 

  4. 4.

    Ferry AP. Macular detachment associated with congenital pit of the optic nerve head. Pathologic findings in two cases simulating malignant melanoma of the choroid. Arch Ophthalmol. 1963;70:346–57.

    CAS  Article  Google Scholar 

  5. 5.

    Irvine AR, Crawford JB, Sullivan JH. The pathogenesis of retinal detachment with morning glory disc and optic pit. Retina. 1986;6:146–50.

    CAS  Article  Google Scholar 

  6. 6.

    Lincoff H, Lopez R, Kreissig I, Yannuzzi L, Cox M, Burton T. Retinoschisis associated with optic nerve pits. Arch Ophthalmol. 1988;106:61–7.

    CAS  Article  Google Scholar 

  7. 7.

    Rutledge BK, Puliafito CA, Duker JS, Hee MR, Cox MS. Optical coherence tomography of macular lesions associated with optic nerve head pits. Ophthalmology. 1996;103:1047–53.

    CAS  Article  Google Scholar 

  8. 8.

    Imamura Y, Zweifel SA, Fujiwara T, Freund KB, Spaide RF. High-resolution optical coherence tomography findings in optic pit maculopathy. Retina. 2010;30:1104–12.

    Article  Google Scholar 

  9. 9.

    Hirakata A, Hida T, Ogasawara A, Iizuka N. Multilayered retinoschisis associated with optic disc pit. Jpn J Ophthalmol. 2005;49:414–6.

    Article  Google Scholar 

  10. 10.

    Bonnet M. Serous macular detachment associated with optic nerve pits. Graefes Arch Clin Exp Ophthalmol. 1991;229:526–32.

    CAS  Article  Google Scholar 

  11. 11.

    Polunina AA, Todorova MG, Palmowski-Wolfe AM. Function and morphology in macular retinoschisis associated with optic disc pit in a child before and after its spontaneous resolution. Doc Ophthalmol. 2012;124:149–55.

    Article  Google Scholar 

  12. 12.

    Tobe T, Nishimura T, Uyama M. Laser photocoagulation for pit-macular syndrome. Ganka-Rinshoiho. 1991;85:124–30 (in Japanese).

    Google Scholar 

  13. 13.

    Cox MS, Witherspoon CD, Morris RE, Flynn HW. Evolving techniques in the treatment of macular detachment caused by optic nerve pits. Ophthalmology. 1988;95:889–96.

    CAS  Article  Google Scholar 

  14. 14.

    Jain N, Johnson MW. Pathogenesis and treatment of maculopathy associated with cavitary optic disc anomalies. Am J Ophthalmol. 2014;158:423–35.

    Article  Google Scholar 

  15. 15.

    Lincoff H, Yannuzzi L, Singerman L, Kreissig I, Fisher Y. Improvement in visual function after displacement of the retinal elevations emanating from optic pits. Arch Ophthalmol. 1993;111:1071–9.

    CAS  Article  Google Scholar 

  16. 16.

    Lincoff H, Kreissig I. Optical coherence tomography of pneumatic displacement of optic disc pit maculopathy. Br J Ophthalmol. 1998;82:367–72.

    CAS  Article  Google Scholar 

  17. 17.

    Theodossiadis GP. Treatment of maculopathy associated with optic disk pit by sponge explant. Am J Ophthalmol. 1996;121:630–7.

    CAS  Article  Google Scholar 

  18. 18.

    Postel EA, Pulido JS, McNamara JA, Johnson MW. The etiology and treatment of macular detachment associated with optic nerve pits and related anomalies. Trans Am Ophthalmol Soc. 1998;96:73–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Hirakata A, Okada AA, Hida T. Long-term results of vitrectomy without laser treatment for macular detachment associated with an optic disc pit. Ophthalmology. 2005;112:1430–5.

    Article  Google Scholar 

  20. 20.

    Spaide RF, Fisher Y, Ober M, Stoller G. Surgical hypothesis: inner retinal fenestration as a treatment for optic disc pit maculopathy. Retina. 2006;26:89–91.

    Article  Google Scholar 

  21. 21.

    Hirakata A, Inoue M, Hiraoka T, McCuen BW 2nd. Vitrectomy without laser treatment or gas tamponade for macular detachment associated with an optic disc pit. Ophthalmology. 2012;119:810–8.

    Article  Google Scholar 

  22. 22.

    Steel DHW, Suleman J, Murphy DC, Song A, Dodds S, Rees J. Optic disc pit maculopathy: A two-year nationwide prospective population-based study. Ophthalmology. 2018;125:1757–64.

    Article  Google Scholar 

  23. 23.

    Abouammoh MA, Alsulaiman SM, Gupta VS, Mousa A, Hirakata A, Berrocal MH, et al. Pars plana vitrectomy with juxtapapillary laser photocoagulation versus vitrectomy without juxtapapillary laser photocoagulation for the treatment of optic disc pit maculopathy: the results of the KKESH International Collaborative Retina Study Group. Br J Ophthalmol. 2016;100:478–83.

    Article  Google Scholar 

  24. 24.

    Ooto S, Mittra RA, Ridley ME, Spaide RF. Vitrectomy with inner retinal fenestration for optic disc pit maculopathy. Ophthalmology. 2014;121:1727–33.

    Article  Google Scholar 

  25. 25.

    Bottoni F, Cereda M, Secondi R, Bochicchio S, Staurenghi G. Vitrectomy for optic disc pit maculopathy: a long-term follow-up study. Graefes Arch Clin Exp Ophthalmol. 2018;256:675–82.

    Article  Google Scholar 

  26. 26.

    Theodossiadis G, Theodossiadis P, Chatziralli I. Thoughts and challenges for the current treatment of optic disc pit maculopathy. Semin Ophthalmol. 2020;35:232–6.

    Article  Google Scholar 

  27. 27.

    Michalewska Z, Nawrocka Z, Nawrocki J. Swept-source OCT and swept-source OCT angiography before and after vitrectomy with stuffing of the optic pit. Ophthalmol Retina. 2020;4:927–37.

    Article  Google Scholar 

  28. 28.

    Sakamoto T, Miyazaki M, Hisatomi T, Nakamura T, Ueno A, Itaya K, et al. Triamcinolone-assisted pars plana vitrectomy improves the surgical procedures and decreases the postoperative blood-ocular barrier breakdown. Graefes Arch Clin Exp Ophthalmol. 2002;240:423–9.

    Article  Google Scholar 

  29. 29.

    Hisatomi T, Notomi S, Tachibana T, Oishi S, Asato R, Yamashita T, et al. Brilliant Blue G double staining enhances successful internal limiting membrane peeling with minimal adverse effect by low cellular permeability into live cells. Retina. 2015;35:310–8.

    Article  Google Scholar 

  30. 30.

    Johnson TM, Johnson MW. Pathogenic implications of subretinal gas migration through pits and atypical colobomas of the optic nerve. Arch Ophthalmol. 2004;122:1793–800.

    Article  Google Scholar 

  31. 31.

    Chang S, Haik BG, Ellsworth RM, St Louis L, Berrocal JA. Treatment of total retinal detachment in morning glory syndrome. Am J Ophthalmol. 1984;97:596–600.

    CAS  Article  Google Scholar 

  32. 32.

    Strauss RW, Priglinger SG, Alge CS, Grueterich M, Haritoglou C. Persistent serous retinal detachment after radial optic neurotomy. Clin Exp Ophthalmol. 2006;34:718–20.

    Article  Google Scholar 

  33. 33.

    Rayat JS, Rudnisky CJ, Waite C, Huang P, Sheidow TG, Kherani A, et al. Long-term outcomes for optic disk pit maculopathy after vitrectomy. Retina. 2015;35:2011–7.

    Article  Google Scholar 

  34. 34.

    Mohammed OA, Pai A. Inverted autologous internal limiting membrane for management of optic disc pit with macular detachment. Middle East Afr J Ophthalmol. 2013;20:357–9.

    Article  Google Scholar 

  35. 35.

    Travassos AS, Regadas I, Alfaiate M, Silva ED, Proença R, Travassos A. Optic pit: novel surgical management of complicated cases. Retina. 2013;33:1708–14.

    Article  Google Scholar 

  36. 36.

    Nakashizuka H, Furuya K, Onoe H, Wakatsuki Y, Machida Y, Kitagawa Y, et al. Anterior lens capsule transplantation for acquired optic disc pit maculopathy. Ophthalmic Surg Lasers Imaging Retina. 2019;50:649–52.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Professor Emeritus Duco Hamasaki of the Bascom Palmer Eye Institute, University of Miami, Miami, Florida, for discussions and thorough editing of the manuscript. Supported in part by Research Grant 17K11431 from the Japan Society for the Promotion of Science, Tokyo, Japan. Previous presentation Presented in part at the XXXIInd Meeting of the Club Jules Gonin, 2020.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Akito Hirakata.

Ethics declarations

Conflicts of interest

M. Sano, None; A. Hirakata, Grant, Lecture fee (Santen, Alcon, Novartis, Senju, Bayer), Grant (HOYA), Lecture fee (Nikon, Kowa, Nidek); Y. Kita, None; Y. Itoh, None; T. Koto, Lecture fee (Santen, Bayer, Novartis, HOYA, Ellex, Pfizer, Kowa, AMO); M. Inoue, Grant, Lecture fee (Alcon), Lecture fee (Novartis, Santen, Senju, Bayer, HOYA, ZEISS, Kowa).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Corresponding Author: Akito Hirakata

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sano, M., Hirakata, A., Kita, Y. et al. Risk factors for failure of resolving optic disc pit maculopathy after primary vitrectomy without laser photocoagulation. Jpn J Ophthalmol (2021). https://doi.org/10.1007/s10384-021-00866-0

Download citation

Keywords

  • Optic disc pit
  • Vitrectomy
  • Retinoschisis
  • Retinal detachment
  • Headache