Skip to main content

Investigation of causative factors for unusual shape of macula in eyes with macula-off rhegmatogenous retinal detachment

Abstract

Purpose

To determine the factors significantly associated with anterior protrusion of the macula in eyes with a macula-off rhegmatogenous retinal detachment (RRD) and to determine the relationship between the intraretinal cystoid cavities (ICCs) and the anterior protrusion and function of the fovea.

Study design

Retrospective cross-sectional study.

Methods

Sixty-nine eyes of 69 patients with successfully reattached macula-off RRD were retrospectively analyzed. Six radial spectral-domain optical coherence tomographic (OCT) images were used to evaluate the effects of the ICCs on detached macula and to measure the angle of the retina at the macula as a parameter to evaluate the anterior protrusion of the detached retina. The findings were compared to other parameters.

Results

The mean angle of the retina at the macula was 143.1 ± 15.9° with a range of 108 to 172°. Preoperatively, 51 eyes (74%) had ICCs in the inner nuclear layer and/or the outer plexiform layer and Henle fiber layer complex, but none was present after surgery. Multivariate regression analyses revealed that the angle of the retina was significantly associated with the presence of ICCs (β = -0.637, P<0.001) and the height of subretinal fluid (β = -0.256, P = 0.005). Eyes with ICCs had poorer preoperative vision (P<0.001), narrower angle of the retina (P<0.001), and thicker subretinal fluid (P<0.001) than eyes without cavities.

Conclusions

The anterior protrusion in eyes with macula-off RRD is associated with the presence of ICCs. The presence of ICCs can affect preoperative function and morphology but does not affect postoperative function and morphology.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    D’Amico DJ. Clinical practice. Primary retinal detachment. N Engl J Med. 2008;359:2346–54.

    Article  Google Scholar 

  2. 2.

    Sakamoto T, Kawano S, Kawasaki R, Hirakata A, Yamashita H, Yamamoto S, et al. Japan-retinal detachment registry report I: preoperative findings in eyes with primary retinal detachment. Jpn J Ophthalmol. 2020;64:1–12.

    Article  Google Scholar 

  3. 3.

    Goto T, Nakagomi T, Iijima H. A comparison of the anatomic successes of primary vitrectomy for rhegmatogenous retinal detachment with superior and inferior breaks. Acta Ophthalmol. 2013;91:552–6.

    Article  Google Scholar 

  4. 4.

    Campo RV, Sipperley JO, Sneed SR, Park DW, Dugel PU, Jacobsen J, et al. Pars plana vitrectomy without scleral buckle for pseudophakic retinal detachments. Ophthalmology. 1999;106:1811–5 ((discussion 6)).

    CAS  Article  Google Scholar 

  5. 5.

    Tan HS, Oberstein SY, Mura M, Bijl HM. Air versus gas tamponade in retinal detachment surgery. Br J Ophthalmol. 2013;97:80–2.

    Article  Google Scholar 

  6. 6.

    Sabates NR, Sabates FN, Sabates R, Lee KY, Ziemianski MC. Macular changes after retinal detachment surgery. Am J Ophthalmol. 1989;108:22–9.

    CAS  Article  Google Scholar 

  7. 7.

    Mervin K, Valter K, Maslim J, Lewis G, Fisher S, Stone J. Limiting photoreceptor death and deconstruction during experimental retinal detachment: the value of oxygen supplementation. Am J Ophthalmol. 1999;128:155–64.

    CAS  Article  Google Scholar 

  8. 8.

    Pak KY, Park KH, Park SW, Byon IS, Lee JE. Comparison between refractive outcomes between macula-on and macula-off retinal detachments after phaco-vitrectomy. Jpn J Ophthalmol. 2019;63:310–6.

    Article  Google Scholar 

  9. 9.

    Kobayashi M, Iwase T, Yamamoto K, Ra E, Murotani K, Matsui S, et al. Association between photoreceptor regeneration and visual acuity following surgery for rhegmatogenous retinal detachment. Investig Ophthalmol Vis Sci. 2016;57:889–98.

    CAS  Article  Google Scholar 

  10. 10.

    Kobayashi M, Iwase T, Yamamoto K, Ra E, Murotani K, Terasaki H. Perioperative factors that are significantly correlated with final visual acuity in eyes after successful rhegmatogenous retinal detachment surgery. PLoS ONE. 2017;12:e0184783.

    Article  Google Scholar 

  11. 11.

    Goto K, Iwase T, Yamamoto K, Ra E, Terasaki H. Correlations between intraretinal cystoid cavities and pre- and postoperative characteristics of eyes after closure of idiopathic macular hole. Sci Rep. 2020;10:2310.

    CAS  Article  Google Scholar 

  12. 12.

    Hirata N, Iwase T, Kobayashi M, Yamamoto K, Ra E, Terasaki H. Correlation between preoperative factors and final visual acuity after successful rhegmatogenous retinal reattachment. Sci Rep. 2019;9:3217.

    Article  Google Scholar 

  13. 13.

    Hagimura N, Suto K, Iida T, Kishi S. Optical coherence tomography of the neurosensory retina in rhegmatogenous retinal detachment. Am J Ophthalmol. 2000;129:186–90.

    CAS  Article  Google Scholar 

  14. 14.

    Yeo YD, Kim YC. Significance of outer retinal undulation on preoperative optical coherence tomography in rhegmatogenous retinal detachment. Sci Rep. 2020;10:15747.

    CAS  Article  Google Scholar 

  15. 15.

    Machemer R, Aaberg TM, Freeman HM, Irvine AR, Lean JS, Michels RM. An updated classification of retinal detachment with proliferative vitreoretinopathy. Am J Ophthalmol. 1991;112:159–65.

    CAS  Article  Google Scholar 

  16. 16.

    Staurenghi G, Sadda S, Chakravarthy U, Spaide RF. Proposed lexicon for anatomic landmarks in normal posterior segment spectral-domain optical coherence tomography: the IN*OCT consensus. Ophthalmology. 2014;121:1572–8.

    Article  Google Scholar 

  17. 17.

    Lee SY, Joe SG, Kim JG, Chung H, Yoon YH. Optical coherence tomography evaluation of detached macula from rhegmatogenous retinal detachment and central serous chorioretinopathy. Am J Ophthalmol. 2008;145:1071–6.

    Article  Google Scholar 

  18. 18.

    Matet A, Savastano MC, Rispoli M, Bergin C, Moulin A, Crisanti P, et al. En face optical coherence tomography of foveal microstructure in full-thickness macular hole: a model to study perifoveal Muller cells. Am J Ophthalmol. 2015;159(1142–51):e3.

    Google Scholar 

  19. 19.

    Huang LL, Levinson DH, Levine JP, Mian U, Tsui I. Optical coherence tomography findings in idiopathic macular holes. J Ophthalmol. 2011;2011:928205.

    Article  Google Scholar 

  20. 20.

    Matet A, Savastano MC, Rispoli M, Bergin C, Moulin A, Crisanti P, et al. En face optical coherence tomography of foveal microstructure in full-thickness macular hole: a model to study perifoveal Müller cells. Am J Ophthalmol. 2015;159(1142–51):e3.

    Google Scholar 

  21. 21.

    Kirschfeld K. Do Müller cells act as optical fibers in the primate retina? Investig Ophthalmol Vis Sci. 2019;60:345–8.

    Article  Google Scholar 

  22. 22.

    Bringmann A, Syrbe S, Görner K, Kacza J, Francke M, Wiedemann P, et al. The primate fovea: structure, function and development. Prog Retin Eye Res. 2018;66:49–84.

    Article  Google Scholar 

  23. 23.

    Bringmann A, Reichenbach A, Wiedemann P. Pathomechanisms of cystoid macular edema. Ophthalm Res. 2004;36:241–9.

    Article  Google Scholar 

  24. 24.

    Hasegawa T, Ueda T, Okamoto M, Ogata N. Relationship between presence of foveal bulge in optical coherence tomographic images and visual acuity after rhegmatogenous retinal detachment repair. Retina. 2014;34:1848–53.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Professor Emeritus Duco Hamasaki of the Bascom Palmer Eye Institute for the discussions and editing of the final version of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Takeshi Iwase.

Ethics declarations

Conflicts of interest

T. Iwase, Grant (Alcon, Bayer); R. Tomita, None; E. Ra, None; C. Iwase, None; H. Terasaki, Grant, Honorarium for Lecturing (Otsuka, Santen, Alcon, Novartis, Wakamoto), Honorarium for Lecturing (Kowa), Honorarium (ROHTO), Honorarium for Lecturing, Consultant fee (Bayer), Honorarium for Lecturing, Non-financial support (ZEISS), Grant (HOYA).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Corresponding Author: Takeshi Iwase

About this article

Verify currency and authenticity via CrossMark

Cite this article

Iwase, T., Tomita, R., Ra, E. et al. Investigation of causative factors for unusual shape of macula in eyes with macula-off rhegmatogenous retinal detachment. Jpn J Ophthalmol 65, 363–371 (2021). https://doi.org/10.1007/s10384-020-00810-8

Download citation

Keywords

  • Rhegmatogenous retinal detachment
  • Optical coherence tomography
  • Macula-off
  • Intraretinal cystoid cavity