Skip to main content

A novel biomarker for increased intracranial pressure in idiopathic intracranial hypertension

Abstract

Purpose

Changes in optic disc and peripapillary structures associated with optic nerve edema in idiopathic intracranial hypertension (IIH), can be evaluated with spectral domain optical coherence tomography (SD-OCT). We aimed to evaluate the association between increased cerebrospinal fluid (CSF) opening pressure and changes in peripapillary structures detected by SD-OCT and to determine whether these changes can be used to assess the changes in CSF pressure without performing lumbar puncture (LP).

Study design

Retrospective study

Methods

We included 54 eyes of 28 patients with bilateral papilledema who had peripapillary SD-OCT imaging within 24 h before the LP. Correlation between CSF pressure and peripapillary OCT parameters including maximal retinal thickness, maximal anterior retinal projection, maximal retinal nerve fiber layer (RNFL) thickness and Bruch membrane opening (BMO) was evaluated.

Results

Bruch Membrane opening and maximal RNFL thickness were significantly higher in patients with increased CSF pressure. There exist correlations between CSF pressure and BMO, maximal RNFL thickness and maximal retinal thickness. (Spearman’s Rho: 0.791, 0.482 and 0.297, p < 0.001, < 0.001 and 0.029, respectively) The cut off value of BMO for the prediction of increased CSF pressure was 1785 µm, with a sensitivity of 78.8% and a specificity of 81%. The cut off value for maximal RNFL thickness was 174 µm, with a sensitivity of 75.8% and a specificity of 61.9%.

Conclusion

Bruch membrane opening and maximal RNFL thickness can give an idea about increased CSF pressure values in IIH patients. Thus SD-OCT can be used to detect CSF pressure changes in these patients.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Rigi M, Almarzouqi SJ, Morgan ML, Lee AG. Papilledema: epidemiology, etiology, and clinical management. Eye Brain. 2015;7:47–57.

    PubMed  PubMed Central  Google Scholar 

  2. 2.

    Trobe JD. Papilledema: the vexing issues. J Neuroophthalmol. 2011;31:175–86.

    Article  Google Scholar 

  3. 3.

    Friedman DI. The pseudotumor cerebri syndrome. Neurol Clin. 2014;32:363–96.

    Article  Google Scholar 

  4. 4.

    Doherty CM, Forbes RB. Diagnostic lumbar puncture. Ulster Med J. 2014;83:93–102.

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Lee SC, Lueck CJ. Cerebrospinal fluid pressure in adults. J Neuroophthalmol. 2014;34:278–83.

    CAS  Article  Google Scholar 

  6. 6.

    SwansonJW, Tomas S Aleman TS, XuW, Gui-Shuang Ying GS, Wei Pan W, Liu GT, et al. Evaluation of Optical Coherence Tomography to Detect Elevated Intracranial Pressure in Children. JAMA Ophthalmol 2017; 135: 320–28.

  7. 7.

    Frisen L. Swelling of the optic nerve head: a staging scheme. J Neurol Neurosurg Psychiatry. 1982;45:13–8.

    CAS  Article  Google Scholar 

  8. 8.

    Scott CJ, Kardon RH, Lee AG, Frisen L, Wall M. Diagnosis and grading of papilledema in patients with raised intracranial pressure using optical coherence tomography vs clinical expert assessment using a clinical staging scale. Arch Ophthalmol. 2010;128:705–11.

    Article  Google Scholar 

  9. 9.

    Rebolleda G, Munoz-Negrete FJ. Follow-up of mild papilledema in idiopathic intracranial hypertension with optical coherence tomography. Invest Ophthalmol Vis Sci. 2009;50:5197–200.

    Article  Google Scholar 

  10. 10.

    Skau M, Yri H, Sander B, Gerds TA, Milea D, Jensen R. Diagnostic value of optical coherence tomography for intracranial pressure in idiopathic intracranial hypertension. Graefes Arch Clin Exp Ophthalmol. 2013;251:567–74.

    Article  Google Scholar 

  11. 11.

    Kardon R. Optical coherence tomography in papilledema: what am I missing? J Neuroophthalmol. 2014;34(Suppl):S10–7.

    Article  Google Scholar 

  12. 12.

    Kaufhold F, Kadas EM, Schmidt C, Kunte H, Hoffmann J, Zimmermann H, et al. Optic nerve head quantification in idiopathic intracranial hypertension by spectral domain OCT. PLoS ONE. 2012;7:e36965.

    CAS  Article  Google Scholar 

  13. 13.

    Eren Y, Kabatas N, Guven H, Comoglu S, Gurdal C. Evaluation of optic nerve head changes with optic coherence tomography in patients with idiopathic intracranial hypertension. Acta Neurol Belg. 2019;119:351–7.

    Article  Google Scholar 

  14. 14.

    Minckler DS, Tso MO, Zimmerman LE. A light microscopic, autoradiographic study of axoplasmic transport in the optic nerve head during ocular hypotony, increased intraocular pressure, and papilledema. Am J Ophthalmol. 1976;82:741–57.

    CAS  Article  Google Scholar 

  15. 15.

    Tso MO, Hayreh SS. Optic disc edema in raised intracranial pressure. IV. Axoplasmic transport in experimental papilledema. Arch Ophthalmol. 1977;95:1458–62.

    CAS  Article  Google Scholar 

  16. 16.

    Anand A, Pass A, Urfy MZ, Tang R, Cajavilca C, Calvillo E, et al. Optical coherence tomography of the optic nerve head detects acute changes in intracranial pressure. J Clin Neurosci. 2016;29:73–6.

    Article  Google Scholar 

  17. 17.

    Sibony P, Kupersmith MJ, Rohlf FJ. Shape analysis of the peripapillary RPE layer in papilledema and ischemic optic neuropathy. Invest Ophthalmol Vis Sci. 2011;52:7987–95.

    Article  Google Scholar 

  18. 18.

    Alperin N, Bagci AM, Lam BL, Sklar E. Automated quantitation of the posterior scleral flattening and optic nerve protrusion by MRI in idiopathic intracranial hypertension. AJNR Am J Neuroradiol. 2013;34:2354–9.

    CAS  Article  Google Scholar 

  19. 19.

    Sibony P, Kupersmith MJ, Honkanen R, Rohlf FJ, Torab-Parhiz A. Effects of lowering cerebrospinal fluid pressure on the shape of the peripapillary retina in intracranial hypertension. Invest Ophthalmol Vis Sci. 2014;55:8223–31.

    Article  Google Scholar 

  20. 20.

    Gampa A, Vangipuram G, Shirazi Z, Moss HE. Quantitative Association Between Peripapillary Bruch’s Membrane Shape and Intracranial Pressure. Invest Ophthalmol Vis Sci. 2017;58:2739–45.

    Article  Google Scholar 

  21. 21.

    Lee DS, Lee EJ, Kim TW, Park YH, Kim J, Lee JW, et al. Influence of translaminar pressure dynamics on the position of the anterior lamina cribrosa surface. Invest Ophthalmol Vis Sci. 2015;56:2833–41.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pınar Bingöl Kızıltunç.

Ethics declarations

Conflicts of interest

P. Bingöl Kızıltunç, None; H. Atilla, None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Corresponding Author: Pınar Bingöl Kızıltunç

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bingöl Kızıltunç, P., Atilla, H. A novel biomarker for increased intracranial pressure in idiopathic intracranial hypertension. Jpn J Ophthalmol 65, 416–422 (2021). https://doi.org/10.1007/s10384-020-00807-3

Download citation

Keywords

  • Bruch membrane opening
  • Cerebrospinal fluid
  • Optical coherence tomography
  • Idiopathic intracranial hypertension
  • Optic disc