Skip to main content

Advertisement

Log in

Hypothetical pathogenesis of age-related macular degeneration and pachychoroid diseases derived from their genetic characteristics

  • Forefront Review
  • Organizer: Mineo Kondo, MD
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Genetic studies have investigated the pathogenesis of age-related macular degeneration (AMD). The pachychoroid concept has recently garnered attention as a possible explanation for AMD pathogenesis; the genetic characteristics of pachychoroid diseases have also been elucidated. In this review, we summarize previously reported genetic characteristics of AMD and pachychoroid diseases, and analyze these data to understand the pathogenesis of AMD and pachychoroid diseases. Previous studies show that VIPR2 and the CFH I62V A allele promote development of pachychoroid and central serous chorioretinopathy (CSC), while the CFH I62V G allele promotes development of drusen, pachychoroid neovasculopathy (PCN/PNV), and AMD. ARMS2/HTRA1 also promotes development of drusen, PCN/PNV, and AMD. TNFRSF10A and GATA5 are associated with CSC but not with pachychoroid, and TNFRSF10A is associated with AMD that includes PCN/PNV. These genetic characteristics suggest the following mechanisms of developing AMD and pachychoroid diseases. VIPR2 and the CFH I62V A allele promote pachychoroid development, which can result in CSC development. The CFH I62V G allele promotes a common step during PCN/PNV and AMD development induced by pachychoroid or drusen, such as damage of Bruch’s membrane or retinal pigment epithelium (RPE). ARMS2/HTRA1 also promotes damage of Bruch’s membrane or RPE, while the association with drusen formation is stronger in ARMS2/HTRA1 than in CFH. TNFRSF10A and GATA5 promote blood-retinal-barrier breakdown to induce CSC, which could lead to PCN/PNV development. Furthermore, recently reported genetic associations with the natural course of CSC suggest the importance of reconsidering the subtype classification of CSC. These associations would enable the development of personalized/precision medicine for CSC and.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, et al. Complement factor H polymorphism in age-related macular degeneration. Science. 2005;308:385–9.

    CAS  Google Scholar 

  2. Gold B, Merriam JE, Zernant J, Hancox LS, Taiber AJ, Gehrs K, et al. Variation in factor B (BF) and complement component 2 (C2) genes is associated with age-related macular degeneration. Nat Genet. 2006;38:458–62.

    CAS  Google Scholar 

  3. Maller JB, Fagerness JA, Reynolds RC, Neale BM, Daly MJ, Seddon JM. Variation in complement factor 3 is associated with risk of age-related macular degeneration. Nat Genet. 2007;39:1200–1.

    CAS  Google Scholar 

  4. Yates JR, Sepp T, Matharu BK, Khan JC, Thurlby DA, Shahid H, et al. Complement C3 variant and the risk of age-related macular degeneration. N Engl J Med. 2007;357:553–61.

    CAS  Google Scholar 

  5. Fagerness JA, Maller JB, Neale BM, Reynolds RC, Daly MJ, Seddon JM. Variation near complement factor I is associated with risk of advanced AMD. Eur J Hum Genet. 2009;17:100–4.

    CAS  Google Scholar 

  6. Fung AT, Yannuzzi LA, Freund KB. Type 1 (sub-retinal pigment epithelial) neovascularization in central serous chorioretinopathy masquerading as neovascular age-related macular degeneration. Retina. 2012;32:1829–37.

    Google Scholar 

  7. Warrow DJ, Hoang QV, Freund KB. Pachychoroid pigment epitheliopathy. Retina. 2013;33:1659–72.

    Google Scholar 

  8. Pang CE, Freund KB. Pachychoroid neovasculopathy. Retina. 2015;35:1–9.

    CAS  Google Scholar 

  9. Miyake M, Ooto S, Yamashiro K, Takahashi A, Yoshikawa M, Akagi-Kurashige Y, et al. Pachychoroid neovasculopathy and age-related macular degeneration. Sci Rep. 2015;5:16204.

    CAS  Google Scholar 

  10. Gass JDM. Pathogenesis of disciform detachment of the neuroepithelium: III. Senile disciform macular degeneration. Am J Ophthalmol. 1967;63:617–44.

    Google Scholar 

  11. Klein R, Davis MD, Magli YL, Segal P, Klein BE, Hubbard L. The Wisconsin age-related maculopathy grading system. Ophthalmology. 1991;98:1128–34.

    CAS  Google Scholar 

  12. Bird AC, Bressler NM, Bressler SB, Chisholm IH, Coscas G, Davis MD, et al. An international classification and grading system for age-related maculopathy and age-related macular degeneration. The International ARM Epidemiological Study Group. Surv Ophthalmol. 1995;39:367–74.

    CAS  Google Scholar 

  13. Areds G. The Age-Related Eye Disease Study system for classifying age-related macular degeneration from stereoscopic color fundus photographs: the Age-Related Eye Disease Study Report Number 6. Am J Ophthalmol. 2001;132:668–81.

    Google Scholar 

  14. Klein R, Klein BE, Tomany SC, Meuer SM, Huang GH. Ten-year incidence and progression of age-related maculopathy: the Beaver Dam eye study. Ophthalmology. 2002;109:1767–79.

    Google Scholar 

  15. Wang JJ, Rochtchina E, Lee AJ, Chia EM, Smith W, Cumming RG, et al. Ten-year incidence and progression of age-related maculopathy: the blue Mountains Eye Study. Ophthalmology. 2007;114:92–8.

    Google Scholar 

  16. Chew EY, Clemons TE, Agron E, Sperduto RD, Sangiovanni JP, Davis MD, et al. Ten-year follow-up of age-related macular degeneration in the age-related eye disease study: AREDS report no. 36. JAMA Ophthalmol. 2014;132:272–7.

    Google Scholar 

  17. Zweifel SA, Imamura Y, Spaide TC, Fujiwara T, Spaide RF. Prevalence and significance of subretinal drusenoid deposits (reticular pseudodrusen) in age-related macular degeneration. Ophthalmology. 2010;117:1775–811.

    Google Scholar 

  18. Spaide RF, Koizumi H, Pozzoni MC. Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol. 2008;146:496–500.

    Google Scholar 

  19. Ikuno Y, Maruko I, Yasuno Y, Miura M, Sekiryu T, Nishida K, et al. Reproducibility of retinal and choroidal thickness measurements in enhanced depth imaging and high-penetration optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52:5536–40.

    Google Scholar 

  20. Hirata M, Tsujikawa A, Matsumoto A, Hangai M, Ooto S, Yamashiro K, et al. Macular choroidal thickness and volume in normal subjects measured by swept-source optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52:4971–8.

    Google Scholar 

  21. Baek J, Lee JH, Jung BJ, Kook L, Lee WK. Morphologic features of large choroidal vessel layer: age-related macular degeneration, polypoidal choroidal vasculopathy, and central serous chorioretinopathy. Graefes Arch Clin Exp Ophthalmol. 2018;256:2309–17.

    Google Scholar 

  22. Imamura Y, Fujiwara T, Margolis R, Spaide RF. Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy. Retina. 2009;29:1469–73.

    Google Scholar 

  23. Piccolino FC, Borgia L. Central serous chorioretinopathy and indocyanine green angiography. Retina. 1994;14:231–42.

    CAS  Google Scholar 

  24. Shiragami C, Takasago Y, Osaka R, Kobayashi M, Ono A, Yamashita A, et al. Clinical features of central serous chorioretinopathy with type 1 choroidal neovascularization. Am J Ophthalmol. 2018;193:80–6.

    Google Scholar 

  25. Takahashi A, Ooto S, Yamashiro K, Tamura H, Oishi A, Miyata M, et al. Pachychoroid geographic atrophy: clinical and genetic characteristics. Ophthalmol Retina. 2018;2:295–305.

    Google Scholar 

  26. Spaide RF. Disease expression in nonexudative age-related macular degeneration varies with choroidal thickness. Retina. 2018;38:708–16.

    Google Scholar 

  27. Fritsche LG, Chen W, Schu M, Yaspan BL, Yu Y, Thorleifsson G, et al. Seven new loci associated with age-related macular degeneration. Nat Genet. 2013;45:433–9.

    CAS  Google Scholar 

  28. Cooke Bailey JN, Sobrin L, Pericak-Vance MA, Haines JL, Hammond CJ, Wiggs JL. Advances in the genomics of common eye diseases. Hum Mol Genet. 2013;22:R59–65.

    CAS  Google Scholar 

  29. Cheng CY, Yamashiro K, Chen LJ, Ahn J, Huang L, Huang L, et al. New loci and coding variants confer risk for age-related macular degeneration in East Asians. Nat Commun. 2015;6:6063.

    CAS  Google Scholar 

  30. Miyake M, Saito M, Yamashiro K, Sekiryu T, Yoshimura N. Complement factor H R1210C among Japanese patients with age-related macular degeneration. Jpn J Ophthalmol. 2015;59:273–8.

    CAS  Google Scholar 

  31. Nakai S, Matsumiya W, Miki A, Honda S, Nakamura M. Association of an age-related maculopathy susceptibility 2 gene variant with the 12-month outcomes of intravitreal aflibercept combined with photodynamic therapy for polypoidal choroidal vasculopathy. Jpn J Ophthalmol. 2019;63:389–95.

    Google Scholar 

  32. Yoneyama S, Sakurada Y, Kikushima W, Sugiyama A, Matsubara M, Fukuda Y, et al. Genetic factors associated with response to as-needed aflibercept therapy for typical neovascular age-related macular degeneration and polypoidal choroidal vasculopathy. Sci Rep. 2020;10:7188.

    CAS  Google Scholar 

  33. Yamashiro K, Mori K, Honda S, Kano M, Yanagi Y, Obana A, et al. A prospective multicenter study on genome wide associations to ranibizumab treatment outcome for age-related macular degeneration. Sci Rep. 2017;7:9196.

    Google Scholar 

  34. Magnusson KP, Duan S, Sigurdsson H, Petursson H, Yang Z, Zhao Y, et al. CFH Y402H confers similar risk of soft drusen and both forms of advanced AMD. PLoS Med. 2006;3:e5.

    Google Scholar 

  35. Thompson CL, Klein BE, Klein R, Xu Z, Capriotti J, Joshi T, et al. Complement factor H and hemicentin-1 in age-related macular degeneration and renal phenotypes. Hum Mol Genet. 2007;16:2135–48.

    CAS  Google Scholar 

  36. Yu Y, Reynolds R, Fagerness J, Rosner B, Daly MJ, Seddon JM. Association of variants in the LIPC and ABCA1 genes with intermediate and large drusen and advanced age-related macular degeneration. Invest Ophthalmol Vis Sci. 2011;52:4663–700.

    CAS  Google Scholar 

  37. Cameron DJ, Yang Z, Gibbs D, Chen H, Kaminoh Y, Jorgensen A, et al. HTRA1 variant confers similar risks to geographic atrophy and neovascular age-related macular degeneration. Cell Cycle. 2007;6:1122–5.

    CAS  Google Scholar 

  38. Nakata I, Yamashiro K, Kawaguchi T, Nakanishi H, Akagi-Kurashige Y, Miyake M, et al. Calcium, ARMS2 genotype, and Chlamydia pneumoniae infection in early age-related macular degeneration: a multivariate analysis from the Nagahama study. Sci Rep. 2015;5:9345.

    CAS  Google Scholar 

  39. Fukuda Y, Sakurada Y, Yoneyama S, Kikushima W, Sugiyama A, Matsubara M, et al. Clinical and genetic characteristics of pachydrusen in patients with exudative age-related macular degeneration. Sci Rep. 2019;9:11906.

    Google Scholar 

  40. Cheung CMG, Shi Y, Tham YC, Sabanayagam C, Neelam K, Wang JJ, et al. Correlation of color fundus photograph grading with risks of early age-related macular degeneration by using automated OCT-derived drusen measurements. Sci Rep. 2018;8:12937.

    Google Scholar 

  41. Liu X, Zhao P, Tang S, Lu F, Hu J, Lei C, et al. Association study of complement factor H, C2, CFB, and C3 and age-related macular degeneration in a Han Chinese population. Retina. 2010;30:1177–84.

    Google Scholar 

  42. Dietzel M, Pauleikhoff D, Arning A, Heimes B, Lommatzsch A, Stoll M, et al. The contribution of genetic factors to phenotype and progression of drusen in early age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol. 2014;252:1273–81.

    CAS  Google Scholar 

  43. Francis PJ, Schultz DW, Hamon S, Ott J, Weleber RG, Klein ML. Haplotypes in the complement factor H (CFH) gene: associations with drusen and advanced age-related macular degeneration. PLoS ONE. 2007;2:e1197.

    Google Scholar 

  44. Arakawa S, Takahashi A, Ashikawa K, Hosono N, Aoi T, Yasuda M, et al. Genome-wide association study identifies two susceptibility loci for exudative age-related macular degeneration in the Japanese population. Nat Genet. 2011;43:1001–4.

    CAS  Google Scholar 

  45. Miki A, Kondo N, Yanagisawa S, Bessho H, Honda S, Negi A. Common variants in the complement factor H gene confer genetic susceptibility to central serous chorioretinopathy. Ophthalmology. 2014;121:1067–72.

    Google Scholar 

  46. de Jong EK, Breukink MB, Schellevis RL, Bakker B, Mohr JK, Fauser S, et al. Chronic central serous chorioretinopathy is associated with genetic variants implicated in age-related macular degeneration. Ophthalmology. 2015;122:562–70.

    Google Scholar 

  47. Hosoda Y, Yoshikawa M, Miyake M, Tabara Y, Ahn J, Woo SJ, et al. CFH and VIPR2 as susceptibility loci in choroidal thickness and pachychoroid disease central serous chorioretinopathy. Proc Natl Acad Sci USA. 2018;115:6261–6.

    CAS  Google Scholar 

  48. Moschos MM, Gazouli M, Gatzioufas Z, Brouzas D, Nomikarios N, Sivaprasad S, et al. Prevalence of the complement factor H and Gstm1 genes polymorphisms in patients with central serous chorioretinopathy. Retina. 2016;36:402–7.

    CAS  Google Scholar 

  49. Schellevis RL, van Dijk EHC, Breukink MB, Altay L, Bakker B, Koeleman BPC, et al. Role of the complement system in chronic central serous chorioretinopathy: a genome-wide association study. JAMA Ophthalmol. 2018;136:1128–36.

    Google Scholar 

  50. Mohabati D, Schellevis RL, van Dijk EHC, Altay L, Fauser S, Hoyng CB, et al. Genetic risk factors in acute central serous chorioretinopathy. Retina. 2019;39:2303–10.

    CAS  Google Scholar 

  51. Hosoda Y, Miyake M, Schellevis RL, Boon CJF, Hoyng CB, Miki A, et al. Genome-wide association analyses identify two susceptibility loci for pachychoroid disease central serous chorioretinopathy. Commun Biol. 2019;2:468.

    CAS  Google Scholar 

  52. Schubert C, Pryds A, Zeng S, Xie Y, Freund KB, Spaide RF, et al. Cadherin 5 is regulated by corticosteroids and associated with central serous chorioretinopathy. Hum Mutat. 2014;35:859–67.

    CAS  Google Scholar 

  53. Breukink MB, Schellevis RL, Boon CJ, Fauser S, Hoyng CB, den Hollander AI, et al. Genomic copy number variations of the complement component C4B gene are associated with chronic central serous chorioretinopathy. Invest Ophthalmol Vis Sci. 2015;56:5608–13.

    CAS  Google Scholar 

  54. van Dijk EHC, Schellevis RL, van Bergen M, Breukink MB, Altay L, Scholz P, et al. Association of a haplotype in the NR3C2 gene, encoding the mineralocorticoid receptor, with chronic central serous chorioretinopathy. JAMA Ophthalmol. 2017;135:446–51.

    Google Scholar 

  55. Miki A, Sakurada Y, Tanaka K, Semba K, Mitamura Y, Yuzawa M, et al. Genome-wide association study to identify a new susceptibility locus for central serous chorioretinopathy in the Japanese population. Invest Ophthalmol Vis Sci. 2018;59:5542–7.

    CAS  Google Scholar 

  56. Schellevis RL, Breukink MB, Gilissen C, Boon CJF, Hoyng CB, de Jong EK, et al. Exome sequencing in patients with chronic central serous chorioretinopathy. Sci Rep. 2019;9:6598.

    Google Scholar 

  57. Schellevis RL, van Dijk EHC, Breukink MB, Keunen JEE, Santen GWE, Hoyng CB, et al. Exome sequencing in families with chronic central serous chorioretinopathy. Mol Genet Genom Med. 2019;7:e00576.

    Google Scholar 

  58. Ryoo NK, Ahn SJ, Park KH, Ahn J, Seo J, Han JW, et al. Thickness of retina and choroid in the elderly population and its association with Complement Factor H polymorphism: KLoSHA Eye study. PLoS ONE. 2018;13:e0209276.

    Google Scholar 

  59. Dansingani KK, Perlee LT, Hamon S, Lee M, Shah VP, Spaide RF, et al. Risk alleles associated with neovascularization in a pachychoroid phenotype. Ophthalmology. 2016;123:2628–30.

    Google Scholar 

  60. Tagawa M, Ooto S, Yamashiro K, Tamura H, Oishi A, Miyata M et al. Characteristics of pachychoroid neovasculopathy. Sci Rep. 2020.

  61. Hosoda Y, Yamashiro K, Miyake M, Ooto S, Oishi A, Miyata M, et al. Predictive genes for the prognosis of central serous chorioretinopathy. Ophthalmol Retina. 2019;3:985–92.

    Google Scholar 

  62. Cho SC, Ryoo NK, Ahn J, Woo SJ, Park KH. Association of irregular pigment epithelial detachment in central serous chorioretinopathy with genetic variants implicated in age-related macular degeneration. Sci Rep. 2020;10:1203.

    CAS  Google Scholar 

  63. Hayashi H, Yamashiro K, Gotoh N, Nakanishi H, Nakata I, Tsujikawa A, et al. CFH and ARMS2 variations in age-related macular degeneration, polypoidal choroidal vasculopathy, and retinal angiomatous proliferation. Invest Ophthalmol Vis Sci. 2010;51:5914–9.

    Google Scholar 

  64. Nakata I, Yamashiro K, Akagi-Kurashige Y, Miyake M, Kumagai K, Tsujikawa A, et al. Association of genetic variants on 8p21 and 4q12 with age-related macular degeneration in Asian populations. Invest Ophthalmol Vis Sci. 2012;53:6576–81.

    CAS  Google Scholar 

  65. Higasa K, Miyake N, Yoshimura J, Okamura K, Niihori T, Saitsu H, et al. Human genetic variation database, a reference database of genetic variations in the Japanese population. J Hum Genet. 2016;61:547–53.

    CAS  Google Scholar 

  66. Sakurada Y, Yoneyama S, Sugiyama A, Tanabe N, Kikushima W, Mabuchi F, et al. Prevalence and genetic characteristics of geographic atrophy among elderly Japanese with age-related macular degeneration. PLoS ONE. 2016;11:e0149978.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Yamashiro.

Ethics declarations

Conflicts of interest

K. Yamashiro, None; Y. Hosoda, None; M. Miyake, None; A. Takahashi, None; S. Ooto, None; A. Tsujikawa, Grant, Lecture fee, Advisory Board fee (Novartis), Grant, Speaker fee (Cannon, AMO, Wakamoto, Otsuka), Grant, Advisory Board fee (Santen, Senju, Alcon), Grant (Findex, Kowa, Pfizer, TOMEY, Taiho), Advisory Board fee (HOYA, Bayer, Chugai, Astellas, Eisai, Daiich-Sankyo, Janssen, Kyoto Drug Discovery & Development, Allergan), Speaker fee (SKK, Nitten).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Organizer: Mineo Kondo, MD.

Corresponding Author: Kenji Yamashiro

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamashiro, K., Hosoda, Y., Miyake, M. et al. Hypothetical pathogenesis of age-related macular degeneration and pachychoroid diseases derived from their genetic characteristics. Jpn J Ophthalmol 64, 555–567 (2020). https://doi.org/10.1007/s10384-020-00773-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-020-00773-w

Keywords

Navigation