Skip to main content
Log in

Two sisters with microphthalmia and anterior segment dysgenesis secondary to a PAX6 pathogenic variant with clinically healthy parents: a case of gonadal mosaicism?

  • Laboratory Investigation
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

Genetic analysis of two siblings with complex microphthalmia, with clinically healthy parents.

Study design

Clinical and experimental.

Methods

The patients underwent a detailed ophthalmic evaluation, including visual acuity, fundus examination, gonioscopy, ultrasound examination, and optical coherence tomography. Lensectomy with anterior vitrectomy was conducted in both patients. Additionally, in patient p1, electroencephalography analysis was performed. Genetic analysis was carried out using array comparative genomic hybridization (aCGH) and whole exome sequencing (WES). Bidirectional Sanger sequencing was conducted for validation and segregation analysis of the identified variant in the family.

Results

The aCGH results were normal. The heterozygous PAX6 variant c.52G>C (p.Gly18Arg) was identified in the proband (p1) through WES analysis. Sanger sequencing of exon 5 of PAX6 confirmed the presence of the variant in the other affected sibling (patient p2) but did not allow for identification of the variant in the parents’ DNA isolated from leukocytes and buccal cells.

Conclusions

The description of the variant in PAX6 in two siblings with clinically healthy parents who are negative for the mutation in DNA from leukocytes and buccal cells represents the possibility of parental gonadal mosaicism. Detection of germ cell mosaicism in the parents is essential to provide genetic counseling to the family regarding the risk of reoccurrence. Furthermore, we also report a pathogenic variant in PAX6 that to our knowledge has not so far been reported in patients with partial aniridia and therefore broadens the spectrum of the variants associated with aniridia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kokotas H, Petersen M. Clinical and molecular aspects of aniridia. Clin Genet. 2010;77:409–20.

    Article  CAS  Google Scholar 

  2. van Heyningen V, Williamson KA. PAX6 in sensory development. Hum Mol Genet. 2002;11:1161–7.

    Article  Google Scholar 

  3. Bhatia S, Bengani H, Fish M, Brown A, Divizia MT, de Marco R, et al. Disruption of autoregulatory feedback by a mutation in a remote, ultraconserved PAX6 enhancer causes aniridia. Am J Hum Genet. 2013;93:1126–34.

    Article  CAS  Google Scholar 

  4. Aggarwal S, Jinda W, Limwongse C, Atchaneeyasakul L, Phadke SR. Run-on mutation in the PAX6 gene and chorioretinal degeneration in autosomal dominant aniridia. Mol Vis. 2011;17:1305–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Hanson IM, Fletcher JM, Jordan T, Brown A, Taylor D, Adams RJ, et al. Mutations at the PAX6 locus are found in heterogeneous anterior segment malformations including Peters’ anomaly. Nat Genet. 1994;6:168–73.

    Article  CAS  Google Scholar 

  6. Azuma N, Yamaguchi Y, Handa H, Tadokoro K, Asaka A, Kawase E, et al. Mutations of the PAX6 gene detected in patients with a variety of optic-nerve malformations. Am J Hum Genet. 2003;72:1565–70.

    Article  CAS  Google Scholar 

  7. Thomas S, Thomas MG, Andrews C, Chan WM, Proudlock FA, McLean RJ, et al. Autosomal-dominant nystagmus, foveal hypoplasia and presenile cataract associated with a novel PAX6 mutation. Eur J Hum Genet. 2014;22:344–9.

    Article  CAS  Google Scholar 

  8. Hingorani M, Hanson I, van Heyningen V. Aniridia. Eur J Hum Genet. 2012;20:1011–7.

    Article  CAS  Google Scholar 

  9. Lee HJ, Colby KA. A review of the clinical and genetic aspects of aniridia. Semin Ophthalmol. 2013;28:306–12.

    Article  Google Scholar 

  10. Crolla JA, van Heyningen V. Frequent chromosome aberrations revealed by molecular cytogenetic studies in patients with aniridia. Am J Hum Genet. 2002;71:1138–49.

    Article  CAS  Google Scholar 

  11. Robinson DO, Howarth RJ, Williamson KA, van Heyningen V, Beal SJ, Crolla JA. Genetic analysis of chromosome 11p13 and the PAX6 gene in a series of 125 cases referred with aniridia. Am J Med Genet A. 2008;146A:558–69.

    Article  CAS  Google Scholar 

  12. Verma AS, Fitzpatrick DR. Anophthalmia and microphthalmia. Orphanet J Rare Dis. 2007;2:47.

    Article  Google Scholar 

  13. Slavotinek A. Genetics of anophthalmia and microphthalmia. Part 2: syndromes associated with anophthalmia–microphthalmia. Hum Genet. 2019;138:831–46.

    Article  CAS  Google Scholar 

  14. Chassaing N, Causse A, Vigouroux A, Delahaye A, Alessandri JL, Boespflug-Tanguy O, et al. Molecular findings and clinical data in a cohort of 150 patients with anophthalmia/microphthalmia. Clin Genet. 2014;86:326–34.

    Article  CAS  Google Scholar 

  15. Gerth-Kahlert C, Williamson K, Ansari M, Rainger JK, Hingst V, Zimmermann T, et al. Clinical and mutation analysis of 51 probands with anophthalmia and/or severe microphthalmia from a single center. Mol Genet Genomic Med. 2013;1:15–311.

    Article  CAS  Google Scholar 

  16. Henderson RA, Williamson K, Cumming S, Clarke MP, Lynch SA, Hanson IM, et al. Inherited PAX6, NF1 and OTX2 mutations in a child with microphthalmia and aniridia. Eur J Hum Genet. 2007;15:898–901.

    Article  CAS  Google Scholar 

  17. Xiao X, Li S, Zhang Q. Microphthalmia, late onset keratitis, and iris coloboma/aniridia in a family with a novel PAX6 mutation. Ophthalmic Genet. 2012;33:119–21.

    Article  CAS  Google Scholar 

  18. Tarilonte M, Morín M, Ramos P, Galdós M, Blanco-Kelly F, Villaverde C, et al. Parental mosaicism in PAX6 causes intra-familial variability: implications for genetic counseling of congenital aniridia and microphthalmia. Front Genet. 2018;17:479.

    Article  Google Scholar 

  19. Bhandari R, Ferri S, Whittaker B, Liu M, Lazzaro DR. Peters anomaly: review of the literature. Cornea. 2011;30:939–44.

    Article  Google Scholar 

  20. Reis LM, Semina EV. Genetics of anterior segment dysgenesis disorders. Curr Opin Ophthalmol. 2011;22:314–24.

    Article  Google Scholar 

  21. Semina EV, Ferrell RE, Mintz-Hittner HA, Bitoun P, Alward WL, Reiter RS, et al. A novel homeobox gene PITX3 is mutated in families with autosomal-dominant cataracts and ASMD. Nat Genet. 1998;19:167–70.

    Article  CAS  Google Scholar 

  22. Ormestad M, Blixt A, Churchill A, Martinsson T, Enerbäck S, Carlsson P. Foxe3 haploinsufficiency in mice: a model for Peters’ anomaly. Invest Ophthalmol Vis Sci. 2002;43:1350–7.

    PubMed  Google Scholar 

  23. Honkanen RA, Nishimura DY, Swiderski RE, Bennett SR, Hong S, Kwon YH, et al. A family with Axenfeld-Rieger syndrome and Peters anomaly caused by a point mutation (Phe112Ser) in the FOXC1 gene. Am J Ophthalmol. 2003;135:368–75.

    Article  CAS  Google Scholar 

  24. Vincent A, Billingsley G, Priston M, Glaser T, Oliver E, Walter M, et al. Further support of the role of CYP1B1 in patients with Peters anomaly. Mol Vis. 2006;12:506–10.

    CAS  PubMed  Google Scholar 

  25. Reis LM, Tyler RC, Volkmann Kloss BA, Schilter KF, Levin AV, Lowry RB, et al. PITX2 and FOXC1 spectrum of mutations in ocular syndromes. Eur J Hum Genet. 2012;20:1224–333.

    Article  CAS  Google Scholar 

  26. Deml B, Reis LM, Maheshwari M, Griffis C, Bick D, Semina EV. Whole exome analysis identifies dominant COL4A1 mutations in patients with complex ocular phenotypes involving microphthalmia. Clin Genet. 2014;86:475–81.

    Article  CAS  Google Scholar 

  27. Acuna-Hidalgo R, Bo T, Kwint MP, van de Vorst M, Pinelli M, Veltman JA, et al. Post-zygotic point mutations are an underrecognized source of de novo genomic variation. Am J Hum Genet. 2015;97:67–74.

    Article  CAS  Google Scholar 

  28. Grønskov K, Rosenberg T, Sand A, Brøndum-Nielsen K. Mutational analysis of PAX6: 16 novel mutations including 5 missense mutations with a mild aniridia phenotype. Eur J Hum Genet. 1999;7:274–86.

    Article  Google Scholar 

  29. Bai Z, Kong X. Extension of the mutation spectrum of PAX6 from three Chinese congenital aniridia families and identification of male gonadal mosaicism. Mol Genet Genomic Med. 2018;6:1053–67.

    Article  CAS  Google Scholar 

  30. Deml B, Reis LM, Lemyre E, Clark RD, Kariminejad A, Semina EV. Novel mutations in PAX6, OTX2 and NDP in anophthalmia, microphthalmia and coloboma. Eur J Hum Genet. 2016;24:535–41.

    Article  CAS  Google Scholar 

  31. Riera M, Wert A, Nieto I, Pomares E. Panel-based whole exome sequencing identifies novel mutations in microphthalmia and anophthalmia patients showing complex Mendelian inheritance patterns. Mol Genet Genomic Med. 2017;5:709–19.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Wawrocka.

Ethics declarations

Conflicts of interest

A. Wawrocka, None; J. Walczak-Sztulpa, None; E. Bukowska-Olech, None; A. Jamsheer, None; M. Jaworski, None; P. Jaworski, None; M. R. Krawczynski, None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Corresponding Author: Anna Wawrocka

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wawrocka, A., Walczak-Sztulpa, J., Bukowska-Olech, E. et al. Two sisters with microphthalmia and anterior segment dysgenesis secondary to a PAX6 pathogenic variant with clinically healthy parents: a case of gonadal mosaicism?. Jpn J Ophthalmol 64, 134–139 (2020). https://doi.org/10.1007/s10384-020-00715-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-020-00715-6

Keywords

Navigation