Advertisement

Japanese Journal of Ophthalmology

, Volume 62, Issue 5, pp 576–583 | Cite as

Comparison of subfoveal choroidal structures in typical neovascular age-related macular degeneration and polypoidal choroidal vasculopathy

  • Yohei Takahashi
  • Hideki KoizumiEmail author
  • Taiji Hasegawa
  • Takahiko Izumi
  • Ichiro Maruko
  • Shozo Sonoda
  • Taiji Sakamoto
  • Tomohiro Iida
Clinical Investigation

Abstract

Purpose

To evaluate and compare the intrachoroidal structures of eyes with typical neovascular age-related macular degeneration (AMD) with those of eyes with polypoidal choroidal vasculopathy (PCV).

Study design

Retrospective and comparative case series.

Methods

Eighty-four treatment-naïve eyes of 84 patients (22 women and 62 men) with typical neovascular AMD or PCV located in the subfoveal region were studied. Cross-sectional images of the retina and choroid were obtained by swept-source optical coherence tomography (SS-OCT). The horizontal SS-OCT images were analyzed by a manual delineation technique and by a binarization method.

Results

Thirty-nine eyes with typical neovascular AMD and 45 eyes with PCV were studied. Although the subfoveal choroidal thickness (SCT) did not differ significantly between the 2 subtypes (255.1 ± 86.7 µm in typical neovascular AMD and 289.2 ± 116.5 µm in PCV, P = 0.29), the ratio of the large choroidal vessel layer (LCVL) thickness to the SCT was significantly larger in the eyes with PCV than in the eyes with typical neovascular AMD (0.863 ± 0.084 vs 0.803 ± 0.125, P = 0.023). The binarization method did not find significant differences in the choroidal structure between the 2 subtypes. Multivariate logistic regression analyses found the ratio of the LCVL thickness to the SCT to be the only significantly different factor between typical neovascular AMD and PCV (P = 0.035).

Conclusion

The intrachoroidal structures of typical neovascular AMD and PCV eyes differ significantly. In eyes with PCV, there seemed to be a greater dilation of the large choroidal vessels.

Keywords

Age-related macular degeneration Choroidal structure Choroidal vasculopathy Optical coherence tomography Polypoidal choroidal thickness 

Notes

Acknowledgement

The authors thank Yuji Yamamoto, Department of Ophthalmology, Kyoto Prefectural University of Medicine, for statistical expertise. This study was supported in part by grant no. 25670739 from the Ministry of Education, Culture, Sports, Science and Technology-Japan (Dr. Koizumi).

Conflicts of interest

Y. Takahashi, None; H. Koizumi, Grant (Novartis), Moderator fees (Alcon, Bausch + Lomb, Bayer, Canon, HOYA, Kowa, NIDEK, Novartis, Santen, Senju, Topcon, Wakamoto); T. Hasegawa, Moderator fees (Alcon, Bayer, Kowa, Novartis, Santen, Senju); T. Izumi, None; I. Maruko, Moderator fees (Alcon, Bayer, NIDEK, Novartis, Santen, Senju, Topcon); S. Sonoda, None; T. Sakamoto, Grant (HOYA, Kowa, Novartis, Senju, Wakamoto), Consultant fees (Bausch + Lomb, Bayer, Novartis, Wakamoto), Moderator fees (Alcon, Kowa, Novartis, Pfizer, Santen, Senju); T. Iida, Grant (NIDEK, Novartis, Santen), Moderator fees (Bayer, Novartis, Santen).

References

  1. 1.
    Wong TY, Chakravarthy U, Klein R, Mitchell P, Zlateva G, Buggage R, et al. The natural history and prognosis of neovascular age-related macular degeneration: a systematic review of the literature and meta-analysis. Ophthalmology. 2008;115:116–26.CrossRefPubMedGoogle Scholar
  2. 2.
    Laude A, Cackett PD, Vithana EN, Yeo IY, Wong D, Koh AH, et al. Polypoidal choroidal vasculopathy and neovascular age-related macular degeneration: same or different disease? Prog Retin Eye Res. 2010;29:19–29.CrossRefPubMedGoogle Scholar
  3. 3.
    Yannuzzi LA, Sorenson J, Spaide RF, Lipson B. Idiopathic polypoidal choroidal vasculopathy (IPCV). Retina. 1990;10:1–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Spaide RF, Koizumi H, Pozonni MC. Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol. 2008;146:496–500.CrossRefPubMedGoogle Scholar
  5. 5.
    Yun S, Tearney G, de Boer J, Ifttimia N, Bouma B. High-speed optical frequency-domain imaging. Opt Express. 2003;11:2953–63.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Koizumi H, Yamagishi T, Yamazaki T, Kawasaki R, Kinoshita S. Subfoveal choroidal thickness in typical age-related macular degeneration and polypoidal choroidal vasculopathy. Graefes Arch Clin Exp Ophthalmol. 2011;249:1123–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Chung SE, Kang SW, Lee JH, Kim YT. Choroidal thickness in polypoidal choroidal vasculopathy and exudative age-related macular degeneration. Ophthalmology. 2011;118:840–5.CrossRefPubMedGoogle Scholar
  8. 8.
    Jirarattanasopa P, Ooto S, Nakata I, Tsujikawa A, Yamashiro K, Oishi A, et al. Choroidal thickness, vascular hyperpermeability, and complement factor H in age-related macular degeneration and polypoidal choroidal vasculopathy. Invest Ophthalmol Vis Sci. 2012;53:3663–72.CrossRefPubMedGoogle Scholar
  9. 9.
    Spaide RF, Yannuzzi LA, Slakter JS, Sorenson J, Orlach DA. Indocyanine green videoangiography of idiopathic polypoidal choroidal vasculopathy. Retina. 1995;15:100–10.CrossRefPubMedGoogle Scholar
  10. 10.
    Kim JH, Chang YS, Lee TG, Kim CG. Choroidal vascular hyperpermeability and punctate hyperfluorescent spot in choroidal neovascularization. Invest Ophthalmol Vis Sci. 2014;56:1909–15.CrossRefGoogle Scholar
  11. 11.
    Miyake M, Tsujikawa A, Yamashiro K, Ooto S, Oishi A, Tamura H, et al. Choroidal neovascularization in eyes with choroidal vascular hyperpermeability. Invest Ophthalmol Vis Sci. 2014;55:3223–30.CrossRefPubMedGoogle Scholar
  12. 12.
    Koizumi H, Yamagishi T, Yamazaki T, Kinoshita S. Relationship between clinical characteristics of polypoidal choroidal vasculopathy and choroidal vascular hyperpermeability. Am J Ophthalmol. 2013;155:305–13.CrossRefPubMedGoogle Scholar
  13. 13.
    Sasahara M, Tsujikawa A, Musashi K, Gotoh N, Otani A, Mandai M, et al. Polypoidal choroidal vasculopathy with choroidal vascular hyperpermeability. Am J Ophthalmol. 2006;142:601–7.CrossRefPubMedGoogle Scholar
  14. 14.
    Maruko I, Iida T, Sugano Y, Saito M, Sekiryu T. Subfoveal retinal and choroidal thickness after verteporfin photodynamic therapy for polypoidal choroidal vasculopathy. Am J Ophthalmol. 2011;151:594–603.CrossRefPubMedGoogle Scholar
  15. 15.
    Branchini LA, Adhi M, Regatieri CV, Nandakumar N, Liu JJ, Laver N, et al. Analysis of choroidal morphologic features and vasculature in healthy eyes using spectral-domain optical coherence tomography. Ophthalmology. 2013;120:1901–8.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Sonoda S, Sakamoto T, Yamashita T, Shirasawa M, Uchino E, Terasaki H, et al. Choroidal structure in normal eyes and after photodynamic therapy determined by binarization of optical coherence tomographic images. Invest Ophthalmol Vis Sci. 2014;55:3893–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Izumi T, Koizumi H, Maruko I, Takahashi Y, Sonoda S, Sakamoto T, et al. Structural analyses of choroid after half-dose verteporfin photodynamic therapy for central serous chorioretinopathy. Br J Ophthalmol. 2017;101:433–7.CrossRefPubMedGoogle Scholar
  18. 18.
    Rosa RH Jr, Davis JL, Eifrig CW. Clinicopathologic reports, case reports, and small case series: clinicopathologic correlation of idiopathic polypoidal choroidal vasculopathy. Arch Ophthalmol. 2002;120:502–8.CrossRefPubMedGoogle Scholar
  19. 19.
    Nakajima M, Yuzawa M, Shimada H, Mori R. Correlation between indocyanine green angiographic findings and histopathology of polypoidal choroidal vasculopathy. Jpn J Ophthalmol. 2004;48:249–55.CrossRefPubMedGoogle Scholar
  20. 20.
    Yang LH, Jonas JB, Wei WB. Optical coherence tomographic enhanced depth imaging of polypoidal choroidal vasculopathy. Retina. 2013;33:1584–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Hayashi K, Hasegawa Y, Tokoro T. Indocyanine green angiography of central serous chorioretinopathy. Int Ophthalmol. 1986;9:37–41.CrossRefPubMedGoogle Scholar
  22. 22.
    Guyer DR, Yannuzzui LA, Slakter JS, Sorenson JA, Ho A, Orlock D. Digital indocyanine green videoangiography of central serous chorioretinopathy. Arch Ophthalmol. 1994;112:1057–62.CrossRefPubMedGoogle Scholar
  23. 23.
    Miyake M, Ooto S, Yamashiro K, Takahashi A, Yoshikawa M, Akagi-Kurashige Y, et al. Pachychoroid neovasculopathy and age-related macular degeneration. Sci Rep. 2015;5:16204.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Wei WB, Xu L, Jonas JB, Shao L, Du KF, Wang S, et al. Subfoveal choroidal thickness: the Beijing Eye Study. Ophthalmology. 2013;120:175–80.CrossRefPubMedGoogle Scholar
  25. 25.
    Sonoda S, Sakamoto T, Yamashita T, Uchino E, Kawano H, Yoshihara N, et al. Luminal and stromal areas of choroid determined by binarization method of optical coherence tomographic images. Am J Ophthalmol. 2015;159:1123–31.CrossRefPubMedGoogle Scholar

Copyright information

© Japanese Ophthalmological Society 2018

Authors and Affiliations

  • Yohei Takahashi
    • 1
  • Hideki Koizumi
    • 1
    • 2
    Email author
  • Taiji Hasegawa
    • 1
  • Takahiko Izumi
    • 1
  • Ichiro Maruko
    • 1
  • Shozo Sonoda
    • 3
  • Taiji Sakamoto
    • 3
  • Tomohiro Iida
    • 1
  1. 1.Department of OphthalmologyTokyo Women’s Medical UniversityTokyoJapan
  2. 2.Department of Ophthalmology, Graduate School of MedicineUniversity of the RyukyusNishihara-choJapan
  3. 3.Department of OphthalmologyKagoshima UniversityKagoshimaJapan

Personalised recommendations