Japanese Journal of Ophthalmology

, Volume 62, Issue 5, pp 605–613 | Cite as

Near-infrared and short-wave autofluorescence in ocular specimens

  • Yasuharu OguchiEmail author
  • Tetsuju Sekiryu
  • Mika Takasumi
  • Yuko Hashimoto
  • Minoru Furuta
Laboratory Investigation



To determine histopathologic characteristics of near-infrared autofluorescence (NIR-AF) and short-wave autofluorescence (SW-AF) in ocular tissue.

Study design

Retrospective study.


Unstained specimens from four enucleated eyes with uveal melanoma were prepared for evaluation by fluorescence microscopy. The filter settings for SW-AF were 450-490 nm for excitation, 500-550 nm for emission and for NIR-AF 672.5-747.5 nm and 765-855 nm respectively.


Hyper-SW-AF was detected in the cornea, crystalline lens, anterior border layer of the iris, basement membrane of the iris posterior epithelium, retinal pigment epithelium (RPE), Bruch’s membrane, and sclera. Hyper-NIR-AF was detected in pigmented tissues, i.e., iris anterior border layer, iris posterior epithelium, ciliary pigmented epithelium, RPE, pigmented cells in the choroid and pigmented cells in the melanoma tumoral masses. The iris anterior border layer had hyper-SW-AF and hyper-NIR-AF with low magnification. The cells on the iris surface were with hyper-SW-AF; under the iris surface cells with hyper-NIR-AF were detected with high magnification. Both hyper-SW-AF and hyper-NIR-AF were in RPE cells. Pigmented cells with hyper-NIR-AF in other uveal tissues did not have hyper-SW-AF. The pigmented cells in the melanoma tumoral masses had very weak NIR-AF.


NIR-AF was seen in the ocular pigmented tissues. The only pigmented tissue with both hyper-SW-AF and hyper-NIR-AF was RPE, the combination of which might help interpret the cellular components of fundus lesions.


lipofuscin melanin near-infrared autofluorescence short-wave autofluorescence melanoma 


Conflicts of interest

Y. Oguchi, None; T. Sekiryu, None; M. Takasumi, None; Y. Hashimoto, None; M. Furuta, None.

Financial Support



  1. 1.
    Sparrow JR, Gregory-Roberts E, Yamamoto K, Blonska A, Ghosh SK, Ueda K, et al. The bisretinoids of retinal pigment epithelium. Prog Retin Eye Res. 2012;31:121–35.CrossRefPubMedGoogle Scholar
  2. 2.
    Lois N, Halfyard AS, Bird AC, Holder GE, Fitzke FW. Fundus autofluorescence in Stargardt macular dystrophy-fundus flavimaculatus. Am J Ophthalmol. 2004;138:55–63.CrossRefPubMedGoogle Scholar
  3. 3.
    Robson AG, El-Amir A, Bailey C, Egan CA, Fitzke FW, Webster AR, et al. Pattern ERG correlates of abnormal fundus autofluorescence in patients with retinitis pigmentosa and normal visual acuity. Invest Ophthalmol Vis Sci. 2003;44:3544–50.CrossRefPubMedGoogle Scholar
  4. 4.
    von Ruckmann A, Schmidt KG, Fitzke FW, Bird AC, Jacobi KW. Serous central chorioretinopathy. Acute autofluorescence of the pigment epithelium of the eye. Ophthalmologe: Zeitschrift der Deutschen Ophthalmologischen Gesellschaft. 1999;96:6–10 (in German).CrossRefGoogle Scholar
  5. 5.
    Eandi CM, Ober M, Iranmanesh R, Peiretti E, Yannuzzi LA. Acute central serous chorioretinopathy and fundus autofluorescence. Retina. 2005;25:989–93.CrossRefPubMedGoogle Scholar
  6. 6.
    Framme C, Walter A, Gabler B, Roider J, Sachs HG, Gabel VP. Fundus autofluorescence in acute and chronic-recurrent central serous chorioretinopathy. Acta Ophthalmol Scand. 2005;83:161–7.CrossRefPubMedGoogle Scholar
  7. 7.
    Solbach U, Keilhauer C, Knabben H, Wolf S. Imaging of retinal autofluorescence in patients with age-related macular degeneration. Retina. 1997;17:385–9.CrossRefPubMedGoogle Scholar
  8. 8.
    Holz FG, Bellmann C, Margaritidis M, Schutt F, Otto TP, Volcker HE. Patterns of increased in vivo fundus autofluorescence in the junctional zone of geographic atrophy of the retinal pigment epithelium associated with age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol. 1999;237:145–52.CrossRefPubMedGoogle Scholar
  9. 9.
    Delori FC, Fleckner MR, Goger DG, Weiter JJ, Dorey CK. Autofluorescence distribution associated with drusen in age-related macular degeneration. Invest Ophthalmol Vis Sci. 2000;41:496–504.PubMedGoogle Scholar
  10. 10.
    Keilhauer CN, Delori FC. Near-infrared autofluorescence imaging of the fundus: visualization of ocular melanin. Invest Ophthalmol Vis Sci. 2006;47:3556–64.CrossRefPubMedGoogle Scholar
  11. 11.
    Vallabh NA, Sahni JN, Parkes CK, Czanner G, Heimann H, Damato B. Near-infrared reflectance and autofluorescence imaging characteristics of choroidal nevi. Eye (London, England). 2016;30:1593–7.CrossRefGoogle Scholar
  12. 12.
    Sekiryu T, Iida T, Maruko I, Saito K, Kondo T. Infrared fundus autofluorescence and central serous chorioretinopathy. Invest Ophthalmol Vis Sci. 2010;51:4956–62.CrossRefPubMedGoogle Scholar
  13. 13.
    Eldred GE, Katz ML. Fluorophores of the human retinal pigment epithelium: separation and spectral characterization. Exp Eye Res. 1988;47:71–86.CrossRefPubMedGoogle Scholar
  14. 14.
    Helve J, Nieminen H. Autofluorescence of the human diabetic lens in vivo. Am J Ophthalmol. 1976;81:493–4.CrossRefPubMedGoogle Scholar
  15. 15.
    Janiec S, Rzendkowski M, Bolek S. The relation between corneal autofluorescence, endothelial cell count and severity of the diabetic retinopathy. Int Ophthalmol. 1994;18:205–9.CrossRefPubMedGoogle Scholar
  16. 16.
    Sparrow JR, Duncker T. Fundus autofluorescence and RPE lipofuscin in age-related macular degeneration. J Clin Med. 2014;3:1302–21.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Shields CL, Bianciotto C, Pirondini C, Materin MA, Harmon SA, Shields JA. Autofluorescence of choroidal melanoma in 51 cases. Br J Ophthalmol. 2008;92:617–22.CrossRefPubMedGoogle Scholar
  18. 18.
    Ito S, Wakamatsu K. Quantitative analysis of eumelanin and pheomelanin in humans, mice, and other animals: a comparative review. Pigment Cell Res. 2003;16:523–31.CrossRefPubMedGoogle Scholar
  19. 19.
    Hu DN, Wakamatsu K, Ito S, McCormick SA. Comparison of eumelanin and pheomelanin content between cultured uveal melanoma cells and normal uveal melanocytes. Melanoma Res. 2009;19:75–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Krasieva TB, Stringari C, Liu F, Sun CH, Kong Y, Balu M, et al. Two-photon excited fluorescence lifetime imaging and spectroscopy of melanins in vitro and in vivo. J Biomed Opt. 2013;18:31107.CrossRefPubMedGoogle Scholar
  21. 21.
    Kayatz P, Thumann G, Luther TT, Jordan JF, Bartz-Schmidt KU, Esser PJ, et al. Oxidation causes melanin fluorescence. Invest Ophthalmol Vis Sci. 2001;42:241–6.PubMedGoogle Scholar
  22. 22.
    Hogan MJ, Alvarado JA, Waddell JE. Histology of the human eye. Philadelphia: W.B. Saunders Company; 1971. p. 320–98.Google Scholar
  23. 23.
    Banerjee B, Miedema BE, Chandrasekhar HR. Role of basement membrane collagen and elastin in the autofluorescence spectra of the colon. J Investig Med. 1999;47:326–32.PubMedGoogle Scholar
  24. 24.
    Davis AS, Richter A, Becker S, Moyer JE, Sandouk A, Skinner J, et al. Characterizing and diminishing autofluorescence in formalin-fixed paraffin-embedded human respiratory tissue. J Histochem Cytochem. 2014;62:405–23.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Wagnieres GA, Star WM, Wilson BC. In vivo fluorescence spectroscopy and imaging for oncological applications. Photochem Photobiol. 1998;68:603–32.CrossRefPubMedGoogle Scholar
  26. 26.
    Khandelwal S, Saxena RK. Age-dependent increase in green autofluorescence of blood erythrocytes. J Biosci. 2007;32:1139–45.CrossRefPubMedGoogle Scholar
  27. 27.
    Uttamlal M, Sheila Holmes-Smith A. The excitation wavelength dependent fluorescence of porphyrins. Chem Phys Lett. 2008;454:223–8.CrossRefGoogle Scholar
  28. 28.
    Sparrow JR, Marsiglia M, Allikmets R, Tsang S, Lee W, Duncker T, et al. Flecks in recessive Stargardt disease: short-wavelength autofluorescence, near-infrared autofluorescence, and optical coherence tomography. Invest Ophthalmol Vis Sci. 2015;56:5029–39.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Battaglia Parodi M, Iacono P, Falcomata B, Bolognesi G, Bandello F. Near-infrared fundus autofluorescence in multiple evanescent white-dot syndrome. Eur J Ophthalmol. 2015;25:43–6.CrossRefPubMedGoogle Scholar
  30. 30.
    Vielkind U, Eberhard P. Normal and malignant melanin-containing pigment cells of xiphophorine fish as studied with formaldehyde-induced fluorescence. J Invest Dermatol. 1978;70:80–3.CrossRefPubMedGoogle Scholar

Copyright information

© Japanese Ophthalmological Society 2018

Authors and Affiliations

  • Yasuharu Oguchi
    • 1
    Email author
  • Tetsuju Sekiryu
    • 1
  • Mika Takasumi
    • 2
  • Yuko Hashimoto
    • 3
  • Minoru Furuta
    • 1
  1. 1.Department of OphthalmologyFukushima Medical University School of MedicineFukushima CityJapan
  2. 2.Department of ImmunologyFukushima Medical University School of MedicineFukushima CityJapan
  3. 3.Department of Diagnostic PathologyFukushima Medical University School of MedicineFukushima CityJapan

Personalised recommendations