Japanese Journal of Ophthalmology

, Volume 62, Issue 5, pp 560–567 | Cite as

Corneal crosslinking for keratoconus in Japanese populations: one year outcomes and a comparison between conventional and accelerated procedures

  • Naoko KatoEmail author
  • Kenji Konomi
  • Megumi Shinzawa
  • Kozue Kasai
  • Takeshi Ide
  • Ikuko Toda
  • Chikako Sakai
  • Kazuno Negishi
  • Kazuo Tsubota
  • Jun Shimazaki
Clinical Investigation



We retrospectively investigated the efficacy of corneal crosslinking (CXL) on progressive keratoconus in a Japanese population and compared the outcomes of conventional and accelerated CXL.

Study design

A retrospective cohort study


A total of 108 consecutive eyes in 95 patients (75 men; 21.9 ± 6.2 years) with progressive keratoconus were enrolled. The epithelium was ablated in all eyes. After presoaking the corneal stroma in riboflavin, UV-A was irradiated at 3.0 mW/cm2 (conventional CXL) for 30 min on 23 eyes and 18.0 mW/cm2 for 5 min (accelerated CXL) on 85 eyes. Best spectacle-corrected visual acuity (BSCVA), manifest refraction, keratometric value, corneal thickness, corneal endothelial cell density (ECD), intraocular pressure, and complications were evaluated at 1, 3, 6, and 12 months after the procedure.


BSCVA, manifest refraction, ECD, and corneal thickness did not change significantly after both procedures. The keratometric value was significantly decreased from the preoperative value at 12 months (p < 0.001). Progression to more than 1.0 D after CXL was observed in 10 eyes (9.3%). The ΔKmax was negatively associated with preoperative Kmax (p < 0.001) and positively associated with preoperative thinnest corneal thickness (p < 0.001). Both treatment modules showed no significant difference in all parameters.


CXL was as effective in treating keratoconus in Japanese patients as in individuals of other ethnicities. Overall, CXL could be performed using either the conventional or accelerated approach to halt the progression of keratoconus in Japanese populations.


Accelerated crosslinking Corneal crosslinking Corneal flattening East Asian Keratoconus 


Conflicts of interest

N. Kato, Administrative support (Eye Lens), Equipment (Eye Lens); K. Konomi, None; M. Shinzawa, None; K. Kasai, None; T. Ide, None; I. Toda, None; C. Sakai, None; K. Negishi, None; K. Tsubota, None; J. Shimazaki, Equipment (Eye Lens).


  1. 1.
    Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol. 2003;135:620–7.CrossRefPubMedGoogle Scholar
  2. 2.
    Kok YO, Tan GF, Loon SC. Review: keratoconus in Asia. Cornea. 2012;31:581–93.CrossRefPubMedGoogle Scholar
  3. 3.
    McMahon TT, Edrington TB, Szczotka-Flynn L, Olafsson HE, Davis LJ, Schechtman KB, CLEK Study Group. Longitudinal changes in corneal curvature in keratoconus. Cornea. 2006;25:296–305.CrossRefPubMedGoogle Scholar
  4. 4.
    Pannebaker C, Chandler HL, Nichols JJ. Tear proteomics in keratoconus. Mol Vis. 2010;16:1949–57.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Balasubramanian SA, Pye DC, Willcox MD. Effects of eye rubbing on the levels of protease, protease activity and cytokines in tears: relevance in keratoconus. Clin Exp Optom. 2013;96:214–8.CrossRefPubMedGoogle Scholar
  6. 6.
    Kolozsvári BL, Berta A, Petrovski G, Miháltz K, Gogolák P, Rajnavölgyi E, et al. Alterations of tear mediators in patients with keratoconus after corneal crosslinking associate with corneal changes. PLoS One. 2013;8:e76333.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kumar Kodavoor S, Arsiwala AZ, Ramamurthy D. One-year clinical study on efficacy of corneal cross-linking in Indian children with progressive keratoconus. Cornea. 2014;33:919–22.CrossRefPubMedGoogle Scholar
  8. 8.
    Arora R, Gupta D, Goyal JL, Jain P. Results of corneal collagen cross-linking in pediatric patients. J Refract Surg. 2012;28:759–62.CrossRefPubMedGoogle Scholar
  9. 9.
    Padmanabhan P, Rachapalle Reddi S, Rajagopal R, Natarajan R, Iyer G, Srinivasan B, et al. Corneal collagen cross-linking for keratoconus in pediatric patients-long-term results. Cornea. 2017;36:138–43.CrossRefPubMedGoogle Scholar
  10. 10.
    Seyedian MA, Aliakbari S, Miraftab M, Hashemi H, Asgari S, Khabazkhoob M. Corneal collagen cross-linking in the treatment of progressive keratoconus: a randomized controlled contralateral eye study. Middle East Afr J Ophthalmol. 2015;22:340–5.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hashemi H, Seyedian MA, Miraftab M, Bahrmandy H, Sabzevari A, Asgari S. Clinical results with two different pharmaceutical preparations of riboflavin in corneal cross-linking: an 18-month follow up. Daru. 2015;23:4.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Chow VW, Chan TC, Yu M, Wong VW, Jhanji V. One-year outcomes of conventional and accelerated collagen crosslinking in progressive keratoconus. Sci Rep. 2015;5:14425.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Tomita M, Mita M, Huseynova T. Accelerated versus conventional corneal collagen crosslinking. J Cataract Refract Surg. 2014;40:1013–20.CrossRefPubMedGoogle Scholar
  14. 14.
    Mita M, Waring GO 4th, Tomita M. High-irradiance accelerated collagen crosslinking for the treatment of keratoconus: six-month results. J Cataract Refract Surg. 2014;40:1032–40.CrossRefPubMedGoogle Scholar
  15. 15.
    Aixinjueluo W, Usui T, Miyai T, Toyono T, Sakisaka T, Yamagami S. Accelerated transepithelial corneal cross-linking for progressive keratoconus: a prospective study of 12 months. Br J Ophthalmol. 2017;10:1244–9.CrossRefGoogle Scholar
  16. 16.
    Kim TG, Kim KY, Han JB, Jin KH. The long-term clinical outcome after corneal collagen cross-linking in Korean patients with progressive keratoconus. Korean J Ophthalmol. 2016;30:326–34.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Han Y, Xu Y, Zhu W, Liu Y, Liu Z, Dou X, et al. Thinner corneas appear to have more striking effects of corneal collagen crosslinking in patients with progressive keratoconus. J Ophthalmol. 2017;2017:6490915.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Gordon-Shaag A, Millodot M, Shneor E, Liu Y. The genetic and environmental factors for keratoconus. Biomed Res Int. 2015;2015:795738.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Wang YM, Chan TC, Yu MCY, Jhanji V. Comparative evaluation of progression rate in keratoconus before and after collagen crosslinking. Br J Ophthalmol. 2017;2017:311017.Google Scholar
  20. 20.
    Kymionis GD, Kontadakis GA, Hashemi KK. Accelerated versus conventional corneal crosslinking for refractive instability: an update. Curr Opin Ophthalmol. 2017;28:343–7.CrossRefPubMedGoogle Scholar
  21. 21.
    Baiocchi S, Mazzotta C, Cerretani D, Caporossi T, Caporossi A. Corneal crosslinking: riboflavin concentration in corneal stroma exposed with and without epithelium. J Cataract Refract Surg. 2009;35:893–9.CrossRefPubMedGoogle Scholar
  22. 22.
    Boxer Wachler BS, Pinelli R, Ertan A, Chan CC. Safety and efficacy of transepithelial crosslinking (C3-R/CXL). J Cataract Refract Surg. 2010;36:186–8.CrossRefPubMedGoogle Scholar
  23. 23.
    Koller T, Pajic B, Vinciguerra P, Seiler T. Flattening of the cornea after collagen crosslinking for keratoconus. J Cataract Refract Surg. 2011;37:1488–92.CrossRefPubMedGoogle Scholar
  24. 24.
    Chen S, Chan TC, Zhang J, Ding P, Chan JC, Yu MC, et al. Epithelium-on corneal collagen crosslinking for management of advanced keratoconus. J Cataract Refract Surg. 2016;42:738–49.CrossRefPubMedGoogle Scholar
  25. 25.
    Greenstein SA, Fry KL, Hersh PS. Effect of topographic cone location on outcomes of corneal collagen cross-linking for keratoconus and corneal ectasia. J Refract Surg. 2012;28:397–405.CrossRefPubMedGoogle Scholar
  26. 26.
    Godefrooij DA, Boom K, Soeters N, Imhof SM, Wisse RP. Predictors for treatment outcomes after corneal crosslinking for keratoconus: a validation study. Int Ophthalmol. 2017;37:341–8.CrossRefPubMedGoogle Scholar
  27. 27.
    Kasai K, Kato N, Konomi K, Shinzawa M, Shimazaki J. Flattening effect of corneal cross-linking depends on the preoperative severity of keratoconus. Medicine. 2017;96:e8160.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Bouheraoua N, Jouve L, El Sanharawi M, Sandali O, Temstet C, Loriaut P, et al. Optical coherence tomography and confocal microscopy following three different protocols of corneal collagen-crosslinking in keratoconus. Invest Ophthalmol Vis Sci. 2014;28(55):7601–9.CrossRefGoogle Scholar

Copyright information

© Japanese Ophthalmological Society 2018

Authors and Affiliations

  • Naoko Kato
    • 1
    • 2
    • 3
    Email author
  • Kenji Konomi
    • 2
  • Megumi Shinzawa
    • 2
  • Kozue Kasai
    • 2
  • Takeshi Ide
    • 4
  • Ikuko Toda
    • 5
  • Chikako Sakai
    • 3
  • Kazuno Negishi
    • 3
  • Kazuo Tsubota
    • 3
  • Jun Shimazaki
    • 2
  1. 1.Department of OphthalmologySaitama Medical UniversityIrumaJapan
  2. 2.Department of Ophthalmology, Ichikawa General HospitalTokyo Dental CollegeChibaJapan
  3. 3.Department of Ophthalmology, School of MedicineKeio UniversityTokyoJapan
  4. 4.Tokyo Vision Eye Clinic AsagayaTokyoJapan
  5. 5.Minamiaoyama Eye ClinicTokyoJapan

Personalised recommendations