Skip to main content
Log in

Optimization of fixative solution for retinal morphology: a comparison with Davidson’s fixative and other fixation solutions

  • Laboratory Investigation
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Purpose

Numerous fixative solutions are available but many are not amenable to the histomorphological preservation of retinae. The investigators specifically focused on retinal histological studies, which rather than 4% formaldehyde (FA), often use Davidson’s fixative. However the latter has its limitations. The purpose of this study was to produce a new fixative which maintains retinae closer to the in vivo conditions.

Study design

Experimental design.

Methods

Four fixative formulations (4% paraformaldehyde, Davidson’s fixative, modified Davidson’s fixative and an in-house fixative – TB-Fix) were tested on retinae and the outcomes on histomorphology and immunohistochemical staining for selected antigenic markers was compared.

Results

TB-Fix markedly improved morphological detail following hematoxylin and eosin staining, most importantly eliminating the spongiform appearance in the plexiform layer and the swelling of somata (including Müller cells), when compared to FA, Davidson’s fixative and its modified version. Retinal samples fixed with TB-Fix or FA showed comparable results in immunohistological staining for neurons and glia in the retina. Importantly, while the whole eye fixed with FA collapsed in shape and induced artificial retinal detachment, the eye fixed with TB-Fix avoided deformation and detachment. Furthermore, we found that TB-Fix also prevented detachment from the culture plate when used to fix HEK293 cells, which are known to detach from the plate easily.

Conclusion

It was demonstrated that TB-Fix provides an overall improvement in the preservation of retinal morphology and chemical composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Schlosshauer B, Grauer D, Dütting D, Vanselow J. Expression of a novel Müller glia specific antigen during development and after optic nerve lesion. Development. 1991;111:789–99.

    PubMed  CAS  Google Scholar 

  2. Shinoe T, Kuribayashi H, Saya H, Seiki M, Aburatani H, Watanabe S. Identification of CD44 as a cell surface marker for Müller glia precursor cells. J Neurochem. 2010;115:1633–42.

    Article  PubMed  CAS  Google Scholar 

  3. Eltoum I, Fredenburgh J, Myers RB, Grizzle WE. Introduction to the theory and practice of fixation of tissues. J Histotechnol. 2001;24:173–90.

    Article  CAS  Google Scholar 

  4. Eldred WD, Zucker C, Karten HJ, Yazulla S. Comparison of fixation and penetration enhancement techniques for use in ultrastructural immunocytochemistry. J Histochem Cytochem. 1983;31:285–92.

    Article  PubMed  CAS  Google Scholar 

  5. Izumi Y, Hammerman SB, Benz AM, Labruyere J, Zorumski CF, Olney JW. Comparison of rat retinal fixation techniques: chemical fixation and microwave irradiation. Exp Eye Res. 2000;70:191–8.

    Article  PubMed  CAS  Google Scholar 

  6. McMenamin PG. Optimal methods for preparation and immunostaining of iris, ciliary body, and choroidal wholemounts. Investig Ophthalmol Vis Sci. 2000;41:3043–8.

    CAS  Google Scholar 

  7. Grizzle WE, Fredenburgh J, Myers RB. Fixation of tissues. In: Bancroft J, Gamble M, editors. Theory and practice of histological techniques. 6th ed. Edinburgh: Churchill Livingstone; 2007. p. 53–74.

    Google Scholar 

  8. McKay JS, Steele SJ, Ahmed G, Johnson E, Ratcliffe K. An antibody panel for immunohistochemical analysis of the retina in Davidson’s-fixed, paraffin-embedded eyes of rats. Exp Toxicol Pathol. 2009;61:91–100.

    Article  PubMed  CAS  Google Scholar 

  9. Latendresse JR, Warbrittion AR, Jonassen H, Creasy DM. Fixation of testes and eyes using a modified Davidson’s fluid: comparison with Bouin’s fluid and conventional Davidson’s fluid. Toxicol Pathol. 2002;30:524–33.

    Article  PubMed  Google Scholar 

  10. Chidlow G, Daymon M, Wood JP, Casson RJ. Localization of a wideranging panel of antigens in the rat retina by immunohistochemistry: comparison of Davidson’s solution and formalin as fixatives. J Histochem Cytochem. 2011;59:884–98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Tokuda K, Zorumski CF, Izumi Y. Involvement of illumination in indocyanine green toxicity after its washout in the ex vivo rat retina. Retina. 2009;29:371–9.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ogata G, Stradleigh TW, Partida GJ, Ishida AT. Dopamine and full-field illumination activate D1 and D2–D5-type receptors in adult rat retinal ganglion cells. J Comp Neurol. 2012;520:4032–49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Margo CE, Lee A. Fixation of whole eyes: the role of fixative osmolarity in the production of tissue artifact. Graefes Arch Clin Exp Ophthalmol. 1995;233:366–70.

    Article  PubMed  CAS  Google Scholar 

  14. Vinores SA, Derevjanik NL, Mahlow J, Hackett SF, Haller JA, deJuan E, et al. Class III beta-tubulin in human retinal pigment epithelial cells in culture and in epiretinal membranes. Exp Eye Res. 1995;60:385–400.

    Article  PubMed  CAS  Google Scholar 

  15. Powner MB, Gillies MC, Zhu M, Vevis K, Hunyor AP, Fruttiger M. Loss of Müller’s cells and photoreceptors in macular telangiectasia type 2. Ophthalmology. 2013;120:2344–52.

    Article  PubMed  Google Scholar 

  16. Vardimon L, Fox LE, Moscona AA. Developmental regulation of glutamine synthetase and carbonic anhydrase II in neural retina. Proc Natl Acad Sci USA. 1986;83:9060–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Kondo H, Iwanaga T, Nakajima T. An immunocytochemical study on the localization of S-100 protein in the retina of rats. Cell Tissue Res. 1983;231:527–32.

    Article  PubMed  CAS  Google Scholar 

  18. Dyer MA, Cepko CL. Control of Müller glial cell proliferation and activation following retinal injury. Nat Neurosci. 2000;3:873–80.

    Article  PubMed  CAS  Google Scholar 

  19. Thomas P, Smart TG. HEK293 cell line: a vehicle for the expression of recombinant proteins. J Pharmacol Toxicol Methods. 2005;51:187–200.

    Article  PubMed  CAS  Google Scholar 

  20. Heegaard S, Rosenberg T, Preising M, Prause JU, Bek T. An unusual retinal vascular morphology in connection with a novel AIPL1 mutation in Leber’s congenital amaurosis. Br J Ophthalmol. 2003;87:980–3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Zhong X, Ge J, Smith EL 3rd, Stell WK. Image defocus modulates activity of bipolar and amacrine cells in macaque retina. Investig Ophthalmol Vis Sci. 2004;45:2065–74.

    Article  Google Scholar 

  22. Tabandeh H, Dubovy S, Green WR. Bilateral midperipheral large drusen and retinal pigment epithelial detachments associated with multifocal areas of choroidal neovascularization: a histopathologic study. Retina. 2006;26:1063–9.

    Article  PubMed  Google Scholar 

  23. Bell WR, Green WR, Goldberg MF. Histopathologic and trypsin digestion studies of the retina in incontinentia pigmenti. Ophthalmology. 2008;115:893–7.

    Article  PubMed  Google Scholar 

  24. Stradleigh TW, Ishida AT. Fixation strategies for retinal immunohistochemistry. Prog Retin Eye Res. 2015;48:181–202.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kiernan JA. Histological and histochemical methods: theory and practice. 5th ed. Banbury: Scion Publishing; 2015.

    Google Scholar 

  26. Helander KG. Kinetic studies of formaldehyde binding in tissue. Biotech Histochem. 1994;69:177–9.

    Article  PubMed  CAS  Google Scholar 

  27. Ghoufi A, Artzner F, Malfreyt P. Physical properties and hydrogen-bonding network of water–ethanol mixtures from molecular dynamics simulations. J Phys Chem B. 2016;120:793–802.

    Article  PubMed  CAS  Google Scholar 

  28. Tzekov R, Lin T, Zhang KM, Jackson B, Oyejide A, Orilla W, et al. Ocular changes after photodynamic therapy. Investig Ophthalmol Vis Sci. 2006;47:377–85.

    Article  Google Scholar 

  29. Marangoni D, Bush RA, Zeng Y, Wei LL, Ziccardi L, Vijayasarathy C, et al. Ocular and systemic safety of a recombinant AAV8 vector for X-linked retinoschisis gene therapy: GLP studies in rabbits and Rs1-KO mice. Mol Ther Methods Clin Dev. 2016;5:16011.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Steinberg RH, Reid M, Lacy PL. The distribution of rods and cones in the retina of the cat (Felis domesticus). J Comp Neurol. 1973;148:229–48.

    Article  PubMed  CAS  Google Scholar 

  31. Pow DV, Wright LL, Vaney DI. The immunocytochemical detection of amino-acid neurotransmitters in paraformaldehyde-fixed tissues. J Neurosci Methods. 1995;56:115–23.

    Article  PubMed  CAS  Google Scholar 

  32. Berod A, Hartman BK, Pujol JF. Importance of fixation in immunohistochemistry: use of formaldehyde solutions at variable pH for the localization of tyrosine-hydroxylase. J Histochem Cytochem. 1981;29:844–50.

    Article  PubMed  CAS  Google Scholar 

  33. Moran J, Hurtado S, Pasantes-Morales H. Similar properties of taurine release induced by potassium and hyposmolarity in the rat retina. Exp Eye Res. 1991;53:347–52.

    Article  PubMed  CAS  Google Scholar 

  34. Villegas GM. Ultrastructure of the human retina. J Anat. 1964;98:501–13.

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Junzo Kitoh for critical advice. The authors thank Yukari Mizuno, Shizuka Murata, Fusako Itoh and Mika Tominaga for technical assistance and support. This work was supported by JSPS KAKENHI Grant number JP16K11323.

Conflicts of interest

K. Tokuda, None; B. Baron, None; Y. Kuramitsu, None; T. Kitagawa, None; N. Tokuda, None; N. Morishige, None; M. Kobayashi, None; K. Kimura, None; K. Nakamura, None; K. Sonoda, None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiro Tokuda.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 205 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tokuda, K., Baron, B., Kuramitsu, Y. et al. Optimization of fixative solution for retinal morphology: a comparison with Davidson’s fixative and other fixation solutions. Jpn J Ophthalmol 62, 481–490 (2018). https://doi.org/10.1007/s10384-018-0592-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-018-0592-7

Keywords

Navigation