Advertisement

Japanese Journal of Ophthalmology

, Volume 62, Issue 3, pp 342–348 | Cite as

Detection of increase in corneal irregularity due to pterygium using Fourier series harmonic analyses with multiple diameters

  • Keiichiro MinamiEmail author
  • Kazunori Miyata
  • Atsushi Otani
  • Tadatoshi Tokunaga
  • Shouta Tokuda
  • Shiro Amano
Clinical Investigation

Abstract

Purpose

To determine steep increase of corneal irregularity induced by advancement of pterygium.

Methods

A total of 456 eyes from 456 consecutive patients with primary pterygia were examined for corneal topography and advancement of pterygium with respect to the corneal diameter. Corneal irregularity induced by the pterygium advancement was evaluated by Fourier harmonic analyses of the topographic data that were modified for a series of analysis diameters from 1 mm to 6 mm. Incidences of steep increases in the asymmetry or higher-order irregularity components (inflection points) were determined by using segmented regression analysis for each analysis diameter.

Results

The pterygium advancement ranged from 2% to 57%, with a mean of 22.0%. Both components showed steep increases from the inflection points. The inflection points in the higher-order irregularity component altered with the analysis diameter (14.0%–30.6%), while there was no alternation in the asymmetry components (35.5%–36.8%). For the former component, the values at the inflection points were obtained in a range of 0.16 to 0.25 D.

Conclusion

The Fourier harmonic analyses for a series of analysis diameters revealed that the higher-order irregularity component increased with the pterygium advancement. The analysis results confirmed the precedence of corneal irregularity due to pterygium advancement.

Keywords

Corneal topography Fourier harmonic analyses Higher-order irregularity Pterygium 

Notes

Conflicts of interest

K. Minami, Grant (Alcon, AMO Japan, HOYA, Otsuka Pharmaceutical, Santen Pharmaceutical, Senju Pharmaceutical, Tomey), Consultant fees (Alcon, AMO Japan, Tomey), Software modification (Tomey), P (Pending); K. Miyata, Grant (Alcon, AMO, HOYA, Otsuka Pharmaceutical, Santen Pharmaceutical, Senju Pharmaceutical, Tomey), Consultant fees (Alcon, HOYA), Lecture fees (Alcon, AMO, Chuo Sangio, HOYA, Otsuka Pharmaceutical, Senju Pharmaceutical, Tomey), Software modification (Tomey), P (Pending); A. Otani, Employee (Tomey), P (Pending); T. Tokunaga, Grant (Alcon, AMO, HOYA, Otsuka Pharmaceutical, Santen Pharmaceutical, Senju Pharmaceutical, Tomey), Software modification (Tomey); S. Tokuda, Grant (Alcon, AMO, HOYA, Otsuka Pharmaceutical, Santen Pharmaceutical, Senju Pharmaceutical, Tomey), Software modification (Tomey); S. Amano, Grant (Alcon, MSD, Novartis Pharmaceutical, Otsuka Pharmaceutical, Santen Pharmaceutical, Senju Pharmaceutical), Lecture fees (AMO, MSD, HOYA, Novartis Pharmaceutical, Otsuka Pharmaceutical, Santen Pharmaceutical, Senju Pharmaceutical).

References

  1. 1.
    Lin A, Stern G. Correlation between pterygium size and induced corneal astigmatism. Cornea. 1998;17:28–30.CrossRefPubMedGoogle Scholar
  2. 2.
    Stern GA, Lin A. Effect of pterygium excision on induced corneal topographic abnormalities. Cornea. 1998;17:23–7.CrossRefPubMedGoogle Scholar
  3. 3.
    Tomidokoro A, Oshika T, Amano S, Eguchi K, Eguchi S. Quantitative analysis of regular and irregular astigmatism induced by pterygium. Cornea. 1999;18:412–5.CrossRefPubMedGoogle Scholar
  4. 4.
    Gumus K, Erkilic K, Topaktas D, Colin J. Effect of pterygia on refractive indices, corneal topography, and ocular aberrations. Cornea. 2011;30:24–9.CrossRefPubMedGoogle Scholar
  5. 5.
    Nejima R, Masuda A, Minami K, Mori Y, Hasegawa Y, Miyata K. Topographic changes after excision surgery of primary pterygia and the effect of pterygium size on topographic restoration. Eye Contact Lens. 2015;41:58–63.CrossRefPubMedGoogle Scholar
  6. 6.
    Kaufman SC, Jacobs DS, Lee WB, Deng SX, Rosenblatt MI, Shtein RM. Options and adjuvants in surgery for pterygium: a report by the American Academy of ophthalmology. Ophthalmology. 2013;120:201–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Tomidokoro A, Miyata K, Sakaguchi Y, Samejima T, Tokunaga T, Oshika T. Effect of pterygium on corneal spherical power and astigmatism. Ophthalmology. 2000;107:1568–71.CrossRefPubMedGoogle Scholar
  8. 8.
    Yilmaz S, Yuksel T, Maden A. Corneal topographic change after four types of pterygium surgery. J Refract Surg. 2008;24:160–5.PubMedGoogle Scholar
  9. 9.
    Shiotani Y, Maeda N, Inoue T, Watanabe H, Inoue Y, Shimomura Y, et al. Comparison of topographic indices that correlate with visual acuity in videokeratography. Ophthalmology. 2000;107:559–64.CrossRefPubMedGoogle Scholar
  10. 10.
    Oshika T, Tomidokoro A, Maruo K, Tokunaga T, Miyata N. Quantitative evaluation of irregular astigmatism by Fourier series harmonic analysis of videokeratography data. Invest Ophthalmol Vis Sci. 1998;39:705–9.PubMedGoogle Scholar
  11. 11.
    Miyata K, Otani S, Honbou N, Minami K. Use of Scheimpflug corneal anterior-posterior imaging in ray-tracing intraocular lens power calculation. Acta Ophthalmol. 2013;91:e546–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Meacock WR, Spalton DJ, Boyce J, Marshall J. The effect of posterior capsule opacification on visual function. Invest Ophthalmol Vis Sci. 2003;44:4665–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Muggeo VM. Estimating regression models with unknown break-points. Stat Med. 2003;22:3055–71.CrossRefPubMedGoogle Scholar
  14. 14.
    Tanabe T, Tomidokoro A, Samejima T, Miyata K, Sato M, Kaji Y, et al. Corneal regular and irregular astigmatism assessed by Fourier analysis of videokeratography data in normal and pathologic eyes. Ophthalmology. 2004;111:752–7.CrossRefPubMedGoogle Scholar
  15. 15.
    Tomidokoro A, Soya K, Miyata K, Armin B, Tanaka S, Amano S, et al. Corneal irregular astigmatism and contrast sensitivity after photorefractive keratectomy. Ophthalmology. 2001;108:2209–12.CrossRefPubMedGoogle Scholar
  16. 16.
    Schuster AK, Tesarz J, Vossmerbaeumer U. The impact on vision of aspheric to spherical monofocal intraocular lenses in cataract surgery: a systematic review with meta-analysis. Ophthalmology. 2013;120:2166–75.CrossRefPubMedGoogle Scholar
  17. 17.
    Schuster AK, Tesarz J, Vossmerbaeumer U. Ocular wavefront analysis of aspheric compared with spherical monofocal intraocular lenses in cataract surgery: systematic review with metaanalysis. J Cataract Refract Surg. 2015;41:1088–97.CrossRefPubMedGoogle Scholar
  18. 18.
    Higa R, Uozato H, Arai Y, Inoue K, Wakakura M. Accuracy of postoperative refraction as predicted using Holladay 2, Haigis and SRK/T formulas. Jpn J Ophthalm Surg. 2014;27:261–4 (in Japanese).Google Scholar
  19. 19.
    Miyata K, Minami K, Otani A, Tokunaga T, Tokuda S, Amano S. Proposal for a novel severity grading system for pterygia based on corneal topographic data. Cornea. 2017;36:834–40.  https://doi.org/10.1097/ICO.0000000000001193.CrossRefPubMedGoogle Scholar
  20. 20.
    Nakagawa T, Maeda N, Higashiura R, Hori Y, Inoue T, Nishida K. Corneal topographic analysis in patients with keratoconus using three-dimensional anterior segment optical coherent tomography. J Cataract Refract Surg. 2011;37:1871–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Fukuda S, Beheregaray S, Hoshi S, Yamanari M, Lim Y, Hiraoka T. Comparison of three-dimensional optical coherence tomography and combining a rotating Scheimpflug camera with a Placido topography system for forme fruste keratoconus diagnosis. Br J Ophthalmol. 2013;97:1554–9.CrossRefPubMedGoogle Scholar

Copyright information

© Japanese Ophthalmological Society 2018

Authors and Affiliations

  1. 1.Miyata Eye HospitalMiyakonojoJapan
  2. 2.Kagoshima Miyata Eye ClinicKagoshimaJapan
  3. 3.Tomey CorporationNagoyaJapan
  4. 4.Inouye Eye HospitalTokyoJapan

Personalised recommendations