Japanese Journal of Ophthalmology

, Volume 62, Issue 2, pp 168–175 | Cite as

Visualization of microaneurysms using optical coherence tomography angiography: comparison of OCTA en face, OCT B-scan, OCT en face, FA, and IA images

  • Masafumi HamadaEmail author
  • Kishiko Ohkoshi
  • Keiji Inagaki
  • Nobuyuki Ebihara
  • Akira Murakami
Clinical Investigation



To compare the visualization of microaneurysms (MAs) in patients with diabetic retinopathy (DR) using optical coherence tomography angiography (OCTA) with that using fluorescein angiography (FA).

Study design

Prospective, clinical, and experimental.


This study was a prospective evaluation of imaging technology. Thirty-seven eyes of 33 patients with DR were scanned using an OCTA instrument. The 83 MAs that were confirmed on OCT B-scan and OCT en face images were evaluated using OCTA, and these findings were compared with those evaluated using FA.


Of the 83 MAs confirmed on OCT B-scan images, 73 (88%) were clearly visualized on the OCTA en face images as nodular or comma-shaped structures, while the remaining 12% did not present with a typical MA or vascular structure on the OCTA en face images at the relevant positions. Seventy-four of the 83 MAs (87%) confirmed on the OCT B-scan images presented as punctate hyperfluorescent spots on the FA images. On the FA images, 8 of 9 (88%) MAs absent on the OCTA en face images presented as hyperfluorescent spots. Visualization of the MAs on the OCTA en face images did not correlate with the OCT B-scan images of the MA lumens (open, closed, or heterogeneous).


For diabetic maculopathy, OCTA en face images do not present with comprehensive MAs images, indicating that some MAs might be overlooked with OCTA en face images.


Angiography Diabetic macular edema Microaneurysms Optical coherence tomography 


Conflicts of interest

M. Hamada, Equipment (Chuo Sangio); K. Ohkoshi, Equipment (Chuo Sangio); K. Inagaki, Nnoe; N. Ebihara, None; A. Murakami, Grant (Abbott Japan, Alcon Japan, Eisai, HOYA, Kaken Pharmaceutical, Kowa Pharmaceutical, Lumenis, MSD, Novartis Phama, Otsuka Pharmaceutical, Pfizer Japan, Santen Pharmaceutical, SEED, Senju Pharmaceutical, Rohto Pharmaceutical, Wakamoto), P (The license for hydrogel ophthalmic lens for gene therapy of eye was acquired by SEED from the Author).


  1. 1.
    Yeung L, Lima VC, Garcia P, Landa G, Rosen RB. Correlation between spectral domain optical coherence tomography findings and fluorescein angiography patterns in diabetic macular edema. Ophthalmology. 2009;116:1158–67.CrossRefPubMedGoogle Scholar
  2. 2.
    Huang Y, Zhang Q, Thorell MR, An L, Durbin MK, Laron M, et al. Swept-source OCT angiography of the retinal vasculature using intensity differentiation-based optical microangiography algorithms. Ophthalmic Surg Lasers Imaging Retina. 2014;45:382–9.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Ishibazawa A, Nagaoka T, Takahashi A, Omae T, Tani T, Sogawa K, et al. Optical coherence tomography angiography in diabetic retinopathy: a prospective pilot study. Am J Ophthalmol. 2015;160:35–44.CrossRefPubMedGoogle Scholar
  4. 4.
    Jia Y, Tan O, Tokayer J, Potsaid B, Wang Y, Liu JJ, et al. Split-spectrum amplitude correlation angiography with optical coherence tomography. Opt Express. 2012;20:4710–25.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Jia Y, Bailey ST, Wilson DJ, Tan O, Klein ML, Flaxel CJ, et al. Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration. Ophthalmology. 2014;121:1435–44.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Jia Y, Wei E, Wang X, Zhang X, Morrison JC, Parikh M, et al. Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology. 2014;121:1322–32.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Mariampillai A, Standish BA, Moriyama EH, Khurana M, Munce NR, Leung MK, et al. Speckle variance detection of microvasculature using swept-source optical coherence tomography. Opt Lett. 2008;33:1530–2.CrossRefPubMedGoogle Scholar
  8. 8.
    Miura M, Makita S, Iwasaki T, Yasuno Y. Three-dimensional visualization of ocular vascular pathology by optical coherence angiography in vivo. Invest Ophthalmol Vis Sci. 2011;52:2689–95.CrossRefPubMedGoogle Scholar
  9. 9.
    Miura M, Hong YJ, Yasuno Y, Muramatsu D, Iwasaki T, Goto H. Three-dimensional vascular imaging of proliferative diabetic retinopathy by Doppler optical coherence tomography. Am J Ophthalmol. 2015;159:528–38.CrossRefPubMedGoogle Scholar
  10. 10.
    Schwartz DM, Fingler J, Kim DY, Zawadzki RJ, Morse LS, Park SS, et al. Phase-variance optical coherence tomography: a technique for noninvasive angiography. Ophthalmology. 2014;121:180–7.CrossRefPubMedGoogle Scholar
  11. 11.
    Spaide RF, Klancnik JM Jr, Cooney MJ. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol. 2015;133:45–50.CrossRefPubMedGoogle Scholar
  12. 12.
    Cheng S, Leng T. Noninvasive detection of microaneurysms in diabetic retinopathy by swept-source optical coherence tomography. Clin Ophthalmol. 2016;16:1791–5.Google Scholar
  13. 13.
    Miwa Y, Murakami T, Suzuma K, Uji A, Yoshitake S, Fujimoto M, et al. Relationship between functional and structural changes in diabetic vessels in optical coherence tomography angiography. Sci Rep. 2016;6:29064.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Salz DA, de Carlo TE, Adhi M, Moult E, Choi W, Baumal CR, et al. Select features of diabetic retinopathy on swept-source optical coherence tomographic angiography compared with fluorescein angiography and normal eyes. JAMA Ophthalmol. 2016;1:644–50.CrossRefGoogle Scholar
  15. 15.
    Parravano M, De Geronimo D, Scarinci F, Querques L, Virgili G, Simonett JM, et al. Relationship between internal reflectivity of diabetic microaneurysms on SD-OCT and detection on OCT angiography. Am J Ophthalmol. 2017;179:90–6.CrossRefPubMedGoogle Scholar
  16. 16.
    Couturier A, Mané V, Bonnin S, Erginay A, Massin P, Gaudric A, et al. Capillary plexus anomalies in diabetic retinopathy on optical coherence tomography angiography. Retina. 2015;35:2384–91.CrossRefPubMedGoogle Scholar
  17. 17.
    Horii T, Murakami T, Nishijima K, Sakamoto A, Ota M, Yoshimura N. Optical coherence tomographic characteristic of microaneurysms in diabetic retinopathy. Am J Ophthalmol. 2009;150:840–8.CrossRefGoogle Scholar
  18. 18.
    Hellstedt T, Immonen I. Disappearance and formation rates of microaneurysms in early diabetic retinopathy. Br J Ophthalmol. 1996;80:135–9.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Jalli PY, Hellstedt TJ, Immonen IJ. Early versus late staining of microaneurysms in fluorescein angiography. Retina. 1997;17:211–5.CrossRefPubMedGoogle Scholar
  20. 20.
    Stitt AW, Gardiner TA, Archer DB. Histological and ultrastructural investigation of retinal microaneurysm development in diabetic patients. Br J Ophthalmol. 1995;79:362–7.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Moore J, Bagley S, Ireland G, McLeod D, Boulton ME. Three dimensional analysis of microaneurysms in the human diabetic retina. J Anat. 1999;194:89–100.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Tam J, Dhamdhere KP, Tiruveedhula P, et al. Subclinical capillary changes in non-proliferative diabetic retinopathy. Optom Vis Sci. 2012;89:E692–703.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Japanese Ophthalmological Society 2018
corrected publication February 2018

Authors and Affiliations

  • Masafumi Hamada
    • 1
    • 2
    Email author
  • Kishiko Ohkoshi
    • 2
  • Keiji Inagaki
    • 1
    • 2
  • Nobuyuki Ebihara
    • 1
    • 3
  • Akira Murakami
    • 1
  1. 1.Department of OphthalmologyJuntendo University Graduate School of MedicineTokyoJapan
  2. 2.Department of OphthalmologySt. Luke’s International HospitalTokyoJapan
  3. 3.Department of OphthalmologyJuntendo University Urayasu HospitalUrayasuJapan

Personalised recommendations