Japanese Journal of Ophthalmology

, Volume 62, Issue 2, pp 101–108 | Cite as

Diagnosis and treatment of anti-myelin oligodendrocyte glycoprotein antibody positive optic neuritis

  • Takeshi KezukaEmail author
  • Hitoshi Ishikawa
Forefront Review Section Organizer: Satoshi Kashii, MD, PhD


Anti-myelin-oligodendrocyte glycoprotein (MOG) antibody positive optic neuritis has been established as a new subset of optic neuropathy. Anti-MOG antibodies are usually measured by cell-based assay. Patients with anti-MOG antibody positive optic neuritis respond well to steroid therapy, and, while visual acuity outcomes are favorable, significant visual field defects remain. Furthermore, patients who are anti-MOG antibody positive have higher rates of recurrence compared to antibody negative patients. Based on these findings, anti-MOG antibody positive patients with optic neuritis have the characteristics of good visual outcomes, residual visual field defects, and high risk of recurrence. Tests for anti-MOG antibody are useful for the diagnosis and treatment of optic neuritis.


Anti-myelin oligodendrocyte glycoprotein antibody Anti-MOG antibody Optic neuritis Chronic recurrent inflammatory optic neuropathy 



We thank Ms. Teresa Nakatani for critical revision of the manuscript. This work was supported in part by Health and Labor Sciences Research Grants for research on intractable diseases from the Ministry of Health, Labour, and Welfare of Japan.

Conflicts of interest

T. Kezuka, None; H. Ishikawa, None.


  1. 1.
    Kezuka T, Usui Y, Goto H. Analysis of the pathogenesis of experimental autoimmune optic neuritis. J Biomed Biotechnol. 2011;2011:294046.CrossRefPubMedGoogle Scholar
  2. 2.
    Shao H, Huang Z, Sun SL, Kaplan HJ, Sun D. Myelin/oligodendrocyte glycoprotein-specific T-cells induce severe optic neuritis in the C57BL/6 mouse. Invest Ophthalmol Vis Sci. 2004;45(45):4060–5.CrossRefPubMedGoogle Scholar
  3. 3.
    Linington C, Bradl M, Lassmann H, Brunner C, Vass K. Augmentation of demyelination in rat acute allergic encephalomyelitis by circulating mouse monoclonal antibodies directed against a myelin/oligodendrocyte glycoprotein. Am J Pathol. 1988;130:443–54.PubMedPubMedCentralGoogle Scholar
  4. 4.
    de Kerlero Rosbo N, Honegger P, Lassmann H, Matthieu JM. Demyelination induced in aggregating brain cell cultures by a monoclonal antibody against myelin/ oligodendrocyte glycoprotein. J Neurochem. 1990;55:583–7.CrossRefGoogle Scholar
  5. 5.
    Matsunaga Y, Kezuka T, An X, Fujita K, Matsuyama N, Matsuda R, et al. Visual functional and histopathological correlation in experimental autoimmune optic neuritis. Invest Ophthalmol Vis Sci. 2012;9(53):6964–71.CrossRefGoogle Scholar
  6. 6.
    Lalive PH, Menge T, Delarasse C, Della Gaspera B, Pham-Dinh D, Villoslada P, et al. Antibodies to native myelin oligodendrocyte glycoprotein are serologic markers of early inflammation in multiple sclerosis. Proc Natl Acad Sci USA. 2006;14(103):2280–5.CrossRefGoogle Scholar
  7. 7.
    Marta CB, Oliver AR, Sweet RA, Pfeiffer SE, Ruddle NH. Pathogenic myelin oligodendrocyte glycoprotein antibodies recognize glycosylated epitopes and perturb oligodendrocyte physiology. Proc Natl Acad Sci USA. 2005;102(27):13992–7.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Zhou D, Srivastava R, Nessler S, Grummel V, Sommer N, Brück W, et al. Identification of a pathogenic antibody response to native myelin oligodendrocyte glycoprotein in multiple sclerosis. Proc Natl Acad Sci USA. 2006;103(12):19057–62.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kim SM, Woodhall MR, Kim JS, Kim SJ, Park KS, Vincent A, et al. Antibodies to MOG in adults with inflammatory demyelinating disease of the CNS. Neurol Neuroimmunol Neuroinflamm. 2015;2(6):e163.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Hacohen Y, Absoud M, Woodhall M, Cummins C, De Goede CG, Hemingway C, et al. Autoantibody biomarkers in childhood-acquired demyelinating syndromes: results from a national surveillance cohort. J Neurol Neurosurg Psychiatr. 2014;85:456–61.CrossRefGoogle Scholar
  11. 11.
    Baumann M, Sahin K, Lechner C, Hennes EM, Schanda K, Mader S, et al. Clinical and neuroradiological differences of paediatric acute disseminating encephalomyelitis with and without antibodies to the myelin oligodendrocyte glycoprotein. J Neurol Neurosurg Psychiatr. 2015;86(265–72):7.Google Scholar
  12. 12.
    Pröbstel AK, Dornmair K, Bittner R, Sperl P, Jenne D, Magalhaes S, et al. Antibodies to MOG are transient in childhood acute disseminated encephalomyelitis. Neurology. 2011;9(77):580–8.CrossRefGoogle Scholar
  13. 13.
    Horellou P, Wang M, Keo V, Chrétien P, Serguera C, Waters P, et al. Increased interleukin-6 correlates with myelin oligodendrocyte glycoprotein antibodies in pediatric monophasic demyelinating diseases and multiple sclerosis. J Neuroimmunol. 2015;15(289):1–7.CrossRefGoogle Scholar
  14. 14.
    Rostasy K, Mader S, Schanda K, Huppke P, Gärtner J, Kraus V, et al. Anti–myelin oligodendrocyte glycoprotein antibodies in pediatric patients with optic neuritis. Arch Neurol. 2012;69:752–6.CrossRefPubMedGoogle Scholar
  15. 15.
    Wingerchuk DM, Banwell B, Bennett JL, Cabre P, Carroll W, Chitnis T, et al. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology. 2015;14(85):177–89.CrossRefGoogle Scholar
  16. 16.
    Pröbstel AK, Rudolf G, Dornmair K, Collongues N, Chanson JB, Sanderson NS, et al. Anti-MOG antibodies are present in a subgroup of patients with a neuromyelitis optica phenotype. J Neuroinflamm. 2015;12:46–53.CrossRefGoogle Scholar
  17. 17.
    Goseki T. Refractory optic neuritis nation survey in Japan. Rinsho Ganka (in Japanese). 2017;71:1688–90.Google Scholar
  18. 18.
    Kezuka T, Usui Y, Yamakawa N, Matsunaga Y, Matsuda R, Masuda M, et al. Relationship between NMO-antibody and anti-MOG antibody in optic neuritis. J Neuro-Ophthalmol. 2012;32:107–10.CrossRefGoogle Scholar
  19. 19.
    Sato DK, Callegaro D, Lana-Peixoto MA, Waters PJ, de Haidar Jorge FM, Takahashi T, et al. Distinction between MOG antibody-positive and AQP4 antibody-positive NMO spectrum disorders. Neurology. 2014;82:474–81.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Matsuda R, Kezuka T, Umazume A, Okunuki Y, Goto H, Tanaka K. Clinical profile of anti-myelin oligodendrocyte glycoprotein antibody seropositive cases of optic neuritis. Neuro-Ophthalmol. 2015;39:213–9.CrossRefGoogle Scholar
  21. 21.
    Waters P, Woodhall M, O’Connor KC, Reindl M, Lang B, Sato DK, et al. MOG cell-based assay detects non-MS patients with inflammatory neurologic disease. Neurol Neuroimmunol Neuroinflamm. 2015;19(2):e89.CrossRefGoogle Scholar
  22. 22.
    Pache F, Zimmermann H, Mikolajczak J, Schumacher S, Lacheta A, Oertel FC, et al. MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 4: afferent visual system damage after optic neuritis in MOG-IgG-seropositive versus AQP4-IgG-seropositive patients. J Neuroinflamm. 2016;13:282.CrossRefGoogle Scholar
  23. 23.
    Kezuka T, Tanaka K, Matsunaga Y, Goto H. Distinction between MOG antibody-positive and AQP4 antibody-positive NMO spectrum disorders. Neurology. 2014;83:475.CrossRefPubMedGoogle Scholar
  24. 24.
    Miyauchi A, Monden Y, Watanabe M, Sugie H, Morita M, Kezuka T, et al. Persistent presence of the anti-myelin oligodendrocyte glycoprotein autoantibody in a pediatric case of acute disseminated encephalomyelitis followed by optic neuritis. Neuropediatrics. 2014;45:196–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Akaishi T, Sato DK, Nakashima I, Takeshita T, Takahashi T, Doi H, et al. MRI and retinal abnormalities in isolated optic neuritis with myelin oligodendrocyte glycoprotein and aquaporin-4 antibodies: a comparative study. J Neurol Neurosurg Psychiatr. 2016;87:446–8.CrossRefGoogle Scholar
  26. 26.
    Akaishi T, Nakashima I, Takeshita T, Mugikura S, Sato DK, Takahashi T, et al. Lesion length of optic neuritis impacts visual prognosis in neuromyelitis optica. J Neuroimmunol. 2016;293:28–33.CrossRefPubMedGoogle Scholar
  27. 27.
    Jarius S, Ruprecht K, Kleiter I, Borisow N, Asgari N, Pitarokoili K. In cooperation with the Neuromyelitis Optica Study Group (NEMOS). MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 2: epidemiology, clinical presentation, radiological and laboratory features, treatment responses, and long-term outcome. J Neuroinflamm. 2016;13:280.CrossRefGoogle Scholar
  28. 28.
    Martinez-Lapiscina EH, Sepulveda M, Torres-Torres R, Alba-Arbalat S, Llufriu S, Blanco Y, et al. Usefulness of optical coherence tomography to distinguish optic neuritis associated with AQP4 or MOG in neuromyelitis optica spectrum disorders. Ther Adv Neurol Disord. 2016;9:436–40.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Kidd D, Burton B, Plant GT, Graham EM. Chronic relapsing inflammatory optic neuropathy (CRION). Brain. 2003;126 (Pt 2):276–84.CrossRefGoogle Scholar
  30. 30.
    Chalmoukou K, Alexopoulos H, Akrivou S, Stathopoulos P, Reindl M, Dalakas MC. Anti-MOG antibodies are frequently associated with steroid-sensitive recurrent optic neuritis. Neurol Neuroimmunol Neuroinflamm. 2015;2:e131.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    The clinical profile of optic neuritis. Experience of the optic neuritis treatment trial. Optic Neuritis Study Group. Arch Ophthalmol. 1991;109:1673–8.CrossRefGoogle Scholar
  32. 32.
    Wakakura M, Minei-Higa R, Oono S, Matsui Y, Tabuchi A, Kani K, et al. Baseline features of idiopathic optic neuritis as determined by a multicenter treatment trial in Japan. Optic Neuritis Treatment Trial Multicenter Cooperative Research Group (ONMRG). Jpn J Ophthalmol. 1999;43:127–32.CrossRefPubMedGoogle Scholar

Copyright information

© Japanese Ophthalmological Society 2018

Authors and Affiliations

  1. 1.KEZUKA Eye ClinicTokyoJapan
  2. 2.Department of OphthalmologyTokyo Medical UniversityTokyoJapan
  3. 3.Department of Orthoptics and Visual Science, School of Allied Health SciencesKitasato UniversityKanagawaJapan

Personalised recommendations