Japanese Journal of Ophthalmology

, Volume 62, Issue 1, pp 31–40 | Cite as

Diagnostic utility of combined retinal ganglion cell count estimates in Japanese glaucoma patients

  • Mari Sakamoto
  • Sotaro Mori
  • Kaori Ueda
  • Azusa Akashi
  • Yukako Inoue
  • Takuji Kurimoto
  • Akiyasu Kanamori
  • Yuko Yamada
  • Makoto Nakamura
Clinical Investigation

Abstract

Purpose

To assess the combined estimate of retinal ganglion cell (RGC) count developed by Medeiros et al. as a tool for diagnosis of glaucoma in Japanese patients.

Study design

Cross-sectional study.

Methods

Thirty-one eyes of 19 healthy controls and 106 eyes of 70 glaucoma patients underwent standard automated perimetry (SAP) and three types of spectral domain optical coherence tomography (SD-OCT) imaging using the Cirrus, RTVue, and 3D-OCT instruments. RGC counts derived from SAP and SD-OCT data were estimated using the Harwerth model (SAPrgc and OCTrgc, respectively), from which the combined RGC count estimates (CRGC) were calculated using the formula developed by Medeiros et al. Receiver operating characteristic curve (ROC) analyses were conducted for mean deviation (MD), retinal nerve fiber layer thickness (RNFLT), and CRGC.

Results

The mean OCTrgc derived from the Cirrus, RTVue, and 3D-OCT instruments were 1150, 1245, and 1316 (× 1000 cells), respectively, for the control group and 463, 519, and 516 (× 1000 cells), respectively, for the patient group. SAPrgc of the controls’ group was 1526 and the patients’ group, 731 (× 1000 cells), and were consistently greater than OCTrgc in both groups (a generalized estimating equation model, p < 0.001). Partial area under the curve (pAUC) of MD was 0.178, and that of RNFLT and CRGC for the three OCT instruments were 0.185, 0.18, 0.189 and 0.196, 0.196, 0.197, respectively. CRGC had larger pAUC than MD, whereas there was no or marginal difference in pAUC between CRGC and cpRNFLT, irrespective of OCT device used or glaucoma severity.

Conclusion

CRGC proved well suited to discriminate glaucoma patients from controls. However, its clinical utility did not seem to overwhelm isolated structural measures in the tested Japanese patients.

Keywords

Retinal ganglion cells Optical coherence tomography Standard automated perimetry Structure–function relationship Glaucoma 

Notes

Acknowledgment

This study was partly supported by JSPS KAKENHI 20592043 (MN, YY, and AN). The English in this report was edited by Crimson Interactive Pvt. Ltd.

Conflicts of interest

M. Sakamoto, None; S. Mori, None; K. Ueda, None; A. Akashi, None; Y. Inoue, None; T. Kurimoto, None; A. Kanamori, Grants (Santen); Y. Yamada, Grants (Bayer); M. Nakamura, Grants (Alcon, Bayer, Kowa, Novartis, Pfizer, Santen), Lecture Fees (Alcon, Kowa, Novartis, Pfizer, Santen).

References

  1. 1.
    Harwerth RS, Carter-Dawson L, Smith EL 3rd, Barnes G, Holt WF, Crawford ML. Neural losses correlated with visual losses in clinical perimetry. Invest Ophthalmol Vis Sci. 2004;45:3152–60. doi: 10.1167/iovs.04-0227.CrossRefPubMedGoogle Scholar
  2. 2.
    Harwerth RS, Quigley HA. Visual field defects and retinal ganglion cell losses in patients with glaucoma. Arch Ophthalmol. 2006;124:853–9. doi: 10.1001/archopht.124.6.853.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Kass MA, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP, et al. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002;120:701–13 discussion 829-30.CrossRefPubMedGoogle Scholar
  4. 4.
    Miglior S, Zeyen T, Pfeiffer N, Cunha-Vaz J, Torri V, Adamsons I, et al. Results of the European Glaucoma Prevention Study. Ophthalmology. 2005;112:366–75. doi: 10.1016/j.ophtha.2004.11.030.CrossRefPubMedGoogle Scholar
  5. 5.
    Harwerth RS, Vilupuru AS, Rangaswamy NV, Smith EL 3rd. The relationship between nerve fiber layer and perimetry measurements. Invest Ophthalmol Vis Sci. 2007;48:763–73. doi: 10.1167/iovs.06-0688.CrossRefPubMedGoogle Scholar
  6. 6.
    Harwerth RS, Wheat JL. Modeling the effects of aging on retinal ganglion cell density and nerve fiber layer thickness. Graefes Arch Clin Exp Ophthalmol. 2008;246:305–14. doi: 10.1007/s00417-007-0691-5.CrossRefPubMedGoogle Scholar
  7. 7.
    Harwerth RS, Wheat JL, Fredette MJ, Anderson DR. Linking structure and function in glaucoma. Prog Retin Eye Res. 2010;29:249–71. doi: 10.1016/j.preteyeres.2010.02.001.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Medeiros FA, Lisboa R, Weinreb RN, Girkin CA, Liebmann JM, Zangwill LM. A combined index of structure and function for staging glaucomatous damage. Arch Ophthalmol. 2012;130:1107–16. doi: 10.1001/archophthalmol.2012.827.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Medeiros FA, Lisboa R, Weinreb RN, Liebmann JM, Girkin C, Zangwill LM. Retinal ganglion cell count estimates associated with early development of visual field defects in glaucoma. Ophthalmology. 2013;120:736–44. doi: 10.1016/j.ophtha.2012.09.039.CrossRefPubMedGoogle Scholar
  10. 10.
    Medeiros FA, Zangwill LM, Anderson DR, Liebmann JM, Girkin CA, Harwerth RS, et al. Estimating the rate of retinal ganglion cell loss in glaucoma. Am J Ophthalmol. 2012;154(814–24):e1. doi: 10.1016/j.ajo.2012.04.022.Google Scholar
  11. 11.
    Wheat JL, Rangaswamy NV, Harwerth RS. Correlating RNFL thickness by OCT with perimetric sensitivity in glaucoma patients. J Glaucoma. 2012;21:95–101. doi: 10.1097/IJG.0b013e31820bcfbe.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Dodd LE, Pepe MS. Partial AUC estimation and regression. Biometrics. 2003;59:614–23.CrossRefPubMedGoogle Scholar
  13. 13.
    Kanamori A, Nakamura M, Tomioka M, Kawaka Y, Yamada Y, Negi A. Agreement among three types of spectral-domain optical coherent tomography instruments in measuring parapapillary retinal nerve fibre layer thickness. Br J Ophthalmol. 2012;96:832–7. doi: 10.1136/bjophthalmol-2011-301084.CrossRefPubMedGoogle Scholar
  14. 14.
    Swanson WH, Horner DG. Assessing assumptions of a combined structure-function index. Ophthalmic Physiol Opt. 2015;35:186–93. doi: 10.1111/opo.12195.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Raza AS, Hood DC. Evaluation of a method for estimating retinal ganglion cell counts using visual fields and optical coherence tomography. Invest Ophthalmol Vis Sci. 2015;56:2254–68. doi: 10.1167/iovs.14-15952.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Japanese Ophthalmological Society 2017

Authors and Affiliations

  • Mari Sakamoto
    • 1
  • Sotaro Mori
    • 1
  • Kaori Ueda
    • 1
  • Azusa Akashi
    • 1
  • Yukako Inoue
    • 1
  • Takuji Kurimoto
    • 1
  • Akiyasu Kanamori
    • 1
  • Yuko Yamada
    • 1
  • Makoto Nakamura
    • 1
  1. 1.Division of Ophthalmology, Department of SurgeryKobe University Graduate School of MedicineKobeJapan

Personalised recommendations