Evaluating internal and ocular residual astigmatism in Chinese myopic children

Abstract

Purpose

To investigate the nature of internal astigmatism (IA) and ocular residual astigmatism (ORA) in Chinese myopic children and to identify factors that may influence IA and ORA.

Methods

A total of 206 eyes of 206 myopic children (97 boys and 109 girls; 10.95 ± 2.2 years) were enrolled in this cross sectional study. Total ocular astigmatism (TOA), anterior corneal astigmatism (ACA), posterior corneal astigmatism (PCA) and total corneal astigmatism (TCA) were measured directly using either a Hartmann–Shack wavefront sensor or a Pentacam. IA and ORA were calculated by Fourier vector analyses (the definitions of IA and ORA are: IA = TOA − ACA − PCA, ORA = TOA − ACA). Spearman or Pearson correlation was adopted to detect multiple factors that may influence IA and ORA, which were then predicted by linear regressions. Modified compensation factors were applied to evaluate the inter-relationship between corneal astigmatism and ORA.

Results

While the mean values of IA and ORA were −0.52 DC × 94.8° and −0.63 DC × 93.0°, respectively, the percentage of ORA power over 1.00 D was as high as 28.64%. Full or under-compensation of ACA by ORA predominated in the enrolled subjects. The mean ORA J0 and J45 were −0.311 ± 0.236 and −0.032 ± 0.156 D, respectively, negatively correlated with the corresponding ACA components (J0: r = −0.276, J45: r = −0.616, p < 0.001). While age was not correlated with either IA or ORA (p > 0.1), the power of IA or ORA was correlated inversely with the axial length (IA: r = −0.193, p = 0.005; ORA: r = −0.169, p = 0.015) and positively with the spherical equivalent refraction (IA r = 0.195, p = 0.005; ORA r = 0.213, p = 0.002) and power of corneal astigmatism (IA-ACA: r = 0.302, IA-TCA: r = 0.368, ORA-ACA: r = 0.334, ORA-TCA: r = 0.293). Girls had larger IA powers than boys (0.741 ± 0.345 D vs 0.651 ± 0.340, p = 0.036).

Conclusions

Full or under-compensation of ACA by ORA is common in Chinese myopic children, and the compensation efficiency may decrease with age. Among Chinese children with myopia, a larger ORA is more prevalent with less myopia and greater corneal astigmatism.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Isenberg SJ, Del Signore M, Chen A, Wei J, Christenson PD. Corneal topography of neonates and infants. Arch Ophthalmol. 2004;122:1767–71.

    Article  PubMed  Google Scholar 

  2. 2.

    Harvey EM, Dobson V, Miller JM, Schwiegerling J, Clifford-Donaldson CE, Green TK, et al. Prevalence of corneal astigmatism in Tohono O’odham Native American children 6 months to 8 years of age. Invest Ophthalmol Vis Sci. 2011;52:4350–5.

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Gwiazda J, Grice K, Held R, McLellan J, Thorn F. Astigmatism and the development of myopia in children. Vision Res. 2000;40:1019–26.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Lai YH, Hsu HT, Wang HZ, Chang CH, Chang SJ. Astigmatism in preschool children in Taiwan. J AAPOS Off Publ Am Assoc Pediatr Ophthalmol Strabismus/Am Assoc Pediatr Ophthalmol Strabismus. 2010;14:150–4.

    Article  Google Scholar 

  5. 5.

    Lee BS, Lindstrom RL, Reeves SW, Hardten DR. Modern management of astigmatism. Int Ophthalmol Clin. 2013;53:65–78.

    Article  PubMed  Google Scholar 

  6. 6.

    Cho P, Cheung SW. Retardation of myopia in Orthokeratology (ROMIO) study: a 2-year randomized clinical trial. Invest Ophthalmol Vis Sci. 2012;53:7077–85.

    Article  PubMed  Google Scholar 

  7. 7.

    Chen C, Cheung SW, Cho P. Myopia control using toric orthokeratology (to-SEE study). Invest Ophthalmol Vis Sci. 2013;54:6510–7.

    Article  PubMed  Google Scholar 

  8. 8.

    Swarbrick HA, Alharbi A, Watt K, Lum E, Kang P. Myopia control during orthokeratology lens wear in children using a novel study design. Ophthalmology. 2015;122:620–30.

    Article  PubMed  Google Scholar 

  9. 9.

    Pauné J, Queiros A, Lopes-Ferreira D, Faria-Ribeiro M, Quevedo L, Gonzalez-Meijome JM. Efficacy of a gas permeable contact lens to induce peripheral myopic defocus. Optom Vis Sci Off Publ Am Acad Optom. 2015;92:596–603.

    Article  Google Scholar 

  10. 10.

    Hiraoka T, Matsumoto Y, Okamoto F, Yamaguchi T, Hirohara Y, Mihashi T, et al. Corneal higher-order aberrations induced by overnight orthokeratology. Am J Ophthalmol. 2005;139:429–36.

    Article  PubMed  Google Scholar 

  11. 11.

    Lian Y, Shen M, Huang S, Yuan Y, Wang Y, Zhu D, et al. Corneal reshaping and wavefront aberrations during overnight orthokeratology. Eye Contact Lens. 2014;40:161–8.

    Article  PubMed  Google Scholar 

  12. 12.

    Hiraoka T, Furuya A, Matsumoto Y, Okamoto F, Sakata N, Hiratsuka K, et al. Quantitative evaluation of regular and irregular corneal astigmatism in patients having overnight orthokeratology. J Cataract Refract Surg. 2004;30:1425–9.

    Article  PubMed  Google Scholar 

  13. 13.

    Chen CC, Cheung SW, Cho P. Toric orthokeratology for highly astigmatic children. Optom Vis Sci Off Publ Am Acad Optom. 2012;89:849–55.

    CAS  Article  Google Scholar 

  14. 14.

    Maseedupally V, Gifford P, Lum E, Swarbrick H. Central and paracentral corneal curvature changes during orthokeratology. Optom Vis Sci Off Publ Am Acad Optom. 2013;90:1249–58.

    Article  Google Scholar 

  15. 15.

    Chou YS, Tai MC, Chen PL, Lu DW, Chien KH. Impact of cylinder axis on the treatment for astigmatic amblyopia. Am J Ophthalmol. 2014;157:908–14.

    Article  PubMed  Google Scholar 

  16. 16.

    Park CY, Oh JH, Chuck RS. Predicting ocular residual astigmatism using corneal and refractive parameters: a myopic eye study. Curr Eye Res. 2013;38:851–61.

    Article  PubMed  Google Scholar 

  17. 17.

    Ho JD, Liou SW, Tsai RJ, Tsai CY. Effects of aging on anterior and posterior corneal astigmatism. Cornea. 2010;29:632–7.

    Article  PubMed  Google Scholar 

  18. 18.

    Piñero DP, Ruiz-Fortes P, Pérez-Cambrodí RJ, Mateo V, Artola A. Ocular residual astigmatism and topographic disparity vector indexes in normal healthy eyes. Cont Lens Anterior Eye. 2014;37:49–54.

    Article  PubMed  Google Scholar 

  19. 19.

    Goggin M. Internal astigmatism and ocular residual astigmatism. J Cataract Refract Surg. 2012; 38: 381-2; author reply 382.

  20. 20.

    Wang X, Wu Q. Investigation of the human anterior segment in normal Chinese subjects using a dual Scheimpflug analyzer. Ophthalmology. 2013;120:703–8.

    Article  PubMed  Google Scholar 

  21. 21.

    Thibos LN, Horner D. Power vector analysis of the optical outcome of refractive surgery. J Cataract Refract Surg. 2001;27:80–5.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Liu YC, Chou P, Wojciechowski R, Lin PY, Liu CJ, Chen SJ, et al. Power vector analysis of refractive, corneal, and internal astigmatism in an elderly Chinese population: the Shihpai Eye Study. Invest Ophthalmol Vis Sci. 2011;52:9651–7.

    Article  PubMed  Google Scholar 

  23. 23.

    Qian Y, Huang J, Chu R, Zhao J, Li M, Zhou X, et al. Influence of intraocular astigmatism on the correction of myopic astigmatism by femtosecond laser small-incision lenticule extraction. J Cataract Refract Surg. 2015;41:1057–64.

    Article  PubMed  Google Scholar 

  24. 24.

    Dubbelman M, Sicam VA, van der Heijde RG. The contribution of the posterior surface to the coma aberration of the human cornea. J Vis. 2007;7(10):1–8.

    Article  Google Scholar 

  25. 25.

    Davison JA, Potvin R. Refractive cylinder outcomes after calculating toric intraocular lens cylinder power using total corneal refractive power. Clin Ophthalmol. 2015;9:1511–7.

    PubMed  PubMed Central  Google Scholar 

  26. 26.

    Harvey EM, Miller JM, Twelker JD, Sherrill DL. Longitudinal change and stability of refractive, keratometric, and internal astigmatism in childhood. Invest Ophthalmol Vis Sci. 2015;56:190–8.

    Article  PubMed Central  Google Scholar 

  27. 27.

    Huynh SC, Kifley A, Rose KA, Morgan I, Heller GZ, Mitchell P. Astigmatism and its components in 6-year-old children. Invest Ophthalmol Vis Sci. 2006;47:55–64.

    Article  PubMed  Google Scholar 

  28. 28.

    Kojima T, Hasegawa A, Hara S, Horai R, Yoshida Y, Nakamura T, et al. Quantitative evaluation of night vision and correlation of refractive and topographical parameters with glare after orthokeratology. Graefes Arch Clin Exp Ophthalmol. 2011;249:1519–26.

    Article  PubMed  Google Scholar 

  29. 29.

    Ueno Y, Hiraoka T, Beheregaray S, Miyazaki M, Ito M, Oshika T. Age-related changes in anterior, posterior, and total corneal astigmatism. J Refract Surg. 2014;30:192–7.

    Article  PubMed  Google Scholar 

  30. 30.

    Kelly JE, Mihashi T, Howland HC. Compensation of corneal horizontal/vertical astigmatism, lateral coma, and spherical aberration by internal optics of the eye. J Vis. 2004;4:262–71.

    Article  PubMed  Google Scholar 

  31. 31.

    Muftuoglu O, Erdem U. Evaluation of internal refraction with the optical path difference scan. Ophthalmol. 2008;115:57–66.

    Article  Google Scholar 

  32. 32.

    Miyake T, Shimizu K, Kamiya K. Distribution of posterior corneal astigmatism according to axis orientation of anterior corneal astigmatism. PLoS ONE. 2015;. doi:10.1371/journal.pone.0117194.

    Google Scholar 

  33. 33.

    Egashira SM, Kish LL, Twelker JD, Mutti DO, Zadnik K, Adams AJ. Comparison of cyclopentolate versus tropicamide cycloplegia in children. Optom Vis Sci. 1993;70:1019–26.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Lin LL, Shih YF, Hsiao CH, Su TC, Chen CJ, Hung PT. The cycloplegic effects of cyclopentolate and tropicamide on myopic children. J Ocul Pharmacol Ther. 1998;14:331–5.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Fan DS, Rao SK, Ng JS, Yu CB, Lam DS. Comparative study on the safety and efficacy of different cycloplegic agents in children with darkly pigmented irides. Clin Exp Ophthalmol. 2004;32:462–7.

    Article  PubMed  Google Scholar 

  36. 36.

    Mutti DO, Zadnik K, Egashira S, Kish L, Twelker JD, Adams AJ. The effect of cycloplegia on measurement of the ocular components. Invest Ophthalmol Vis Sci. 1994;35:515–27.

    CAS  PubMed  Google Scholar 

  37. 37.

    Manny RE, Hussein M, Scheiman M, Kurtz D, Niemann K, Zinzer K, et al. Tropicamide (1%): an effective cycloplegic agent for myopic children. Invest Ophthalmol Vis Sci. 2001;42:1728–35.

    CAS  PubMed  Google Scholar 

  38. 38.

    Nawrot P, Przekoracka-Krawczyk A, Perz K, Rusiak P, Naskrecki R. Change in ocular refraction after tropicamide cycloplegia in preschool children. Klin Oczna. 2012;114:278–81.

    PubMed  Google Scholar 

Download references

Acknowledgements

Thanks to Dr. Xi Wu and Dr. Yanling He for the design and technique support to the research. This research was supported by the Beijing Municipal Science & Technology Commission (No. Z131107002213127).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kai Wang.

Ethics declarations

Conflicts of interest

Y. Liu, None; Y. Cheng, None; Y. Zhang, None; L. Zhang, None; M. Zhao, None; K. Wang, None.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Cheng, Y., Zhang, Y. et al. Evaluating internal and ocular residual astigmatism in Chinese myopic children. Jpn J Ophthalmol 61, 494–504 (2017). https://doi.org/10.1007/s10384-017-0532-y

Download citation

Keywords

  • Ocular residual astigmatism
  • Internal astigmatism
  • Myopia
  • Children