Skip to main content

Advertisement

Log in

Retinal sensitivity after displacement of submacular hemorrhage due to polypoidal choroidal vasculopathy: effectiveness and safety of subretinal tissue plasminogen activator

  • Clinical Investigation
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the effectiveness of displacement of submacular hemorrhage (SMH) caused by polypoidal choroidal vasculopathy (PCV) by assessing retinal sensitivity using microperimetry.

Methods

We retrospectively reviewed the medical records of 11 consecutive PCV patients with SMH. All patients underwent vitrectomy, subretinal injection of tissue plasminogen activator, and fluid-air exchange, followed by antivascular endothelial growth factor therapy using a pro re nata regimen. The retinal sensitivity was measured by use of microperimetry before and after surgery.

Results

The mean (SD) age of the patients was 74.1 ± 9.4 years. The mean SMH diameter was 6.8 ± 5.2 disc diameters. The best-corrected visual acuity (BCVA), mean retinal sensitivity, and mean number of measure points with a sensitivity ≥10 dB before the surgery were 0.94 ± 0.49, 4.2 ± 4.5 dB, and 15.6 ± 15.1 points, respectively. These had significantly improved 6 months after surgery (0.39 ± 0.37, 15.6 ± 7.3 dB, and 50.9 ± 22.2 points, respectively; P < 0.05 for all outcome measures). The mean number of measure points with an absolute scotoma before surgery had decreased significantly 6 months after surgery (from 40.5 ± 15.0 to 9.4 ± 16.0 points; P < 0.001).

Conclusions

Displacement of SMH effectively improves retinal sensitivity as well as BCVA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Uyama M, Wada M, Nagai Y, Matsubara T, Matsunaga H, Fukushima I, et al. Polypoidal choroidal vasculopathy: natural history. Am J Ophthalmol. 2002;133:639–48.

    Article  PubMed  Google Scholar 

  2. Sho K, Takahashi K, Yamada H, Wada M, Nagai Y, Otsuji T, et al. Polypoidal choroidal vasculopathy: incidence, demographic features, and clinical characteristics. Arch Ophthalmol. 2003;121:1392–6.

    Article  PubMed  Google Scholar 

  3. Cho JH, Ryoo N-K, Cho KH, Park SJ, Park KH, Woo SJ. Incidence rate of massive submacular hemorrhage and its risk factors in polypoidal choroidal vasculopathy. Am J Ophthalmol. 2016;169:79–88.

    Article  PubMed  Google Scholar 

  4. Ohji M, Saito Y, Hayashi A, Lewis JM, Tano Y. Pneumatic displacement of subretinal hemorrhage without tissue plasminogen activator. Arch Ophthalmol. 1998;116:1326–32.

    Article  CAS  PubMed  Google Scholar 

  5. Hesse L, Schmidt J, Kroll P. Management of acute submacular hemorrhage using recombinant tissue plasminogen activator and gas. Graefes Arch Clin Exp Ophthalmol. 1999;237:273–7.

    Article  CAS  PubMed  Google Scholar 

  6. Haupert CL, McCuen BW, Jaffe GJ, Steuer ER, Cox TA, Toth CA, et al. Pars plana vitrectomy, subretinal injection of tissue plasminogen activator, and fluid-gas exchange for displacement of thick submacular hemorrhage in age-related macular degeneration. Am J Ophthalmol. 2001;131:208–15.

    Article  CAS  PubMed  Google Scholar 

  7. Fine HF, Iranmanesh R, Del Priore LV, Barile GR, Chang LK, Chang S, et al. Surgical outcomes after massive subretinal hemorrhage secondary to age-related macular degeneration. Retina. 2010;30:1588–94.

    Article  PubMed  Google Scholar 

  8. Kimura S, Morizane Y, Hosokawa M, Shiode Y, Kawata T, Doi S, et al. Submacular hemorrhage in polypoidal choroidal vasculopathy treated by vitrectomy and subretinal tissue plasminogen activator. Am J Ophthalmol. 2015;159:683–9.

    Article  CAS  PubMed  Google Scholar 

  9. van Zeeburg EJT, van Meurs JC. Literature review of recombinant tissue plasminogen activator used for recent-onset submacular hemorrhage displacement in age-related macular degeneration. Ophthalmologica. 2013;229:1–14.

    Article  PubMed  Google Scholar 

  10. Steel DHW, Sandhu SS. Submacular haemorrhages associated with neovascular age-related macular degeneration. Br J Ophthalmol. 2011;95:1051–7.

    Article  PubMed  Google Scholar 

  11. Toth CA, Morse LS, Hjelmeland LM, Landers MB. Fibrin directs early retinal damage after experimental subretinal hemorrhage. Arch Ophthalmol. 1991;109:723–9.

    Article  CAS  PubMed  Google Scholar 

  12. Benner JD, Morse LS, Toth CA, Landers MB, Hjelmeland LM. Evaluation of a commercial recombinant tissue-type plasminogen activator preparation in the subretinal space of the cat. Arch Ophthalmol. 1991;109:1731–6.

    Article  CAS  PubMed  Google Scholar 

  13. Hillenkamp J, Surguch V, Framme C, Gabel V-P, Sachs HG. Management of submacular hemorrhage with intravitreal versus subretinal injection of recombinant tissue plasminogen activator. Graefes Arch Clin Exp Ophthalmol. 2010;248:5–11.

    Article  CAS  PubMed  Google Scholar 

  14. Vujosevic S, Midena E, Pilotto E, Radin PP, Chiesa L, Cavarzeran F. Diabetic macular edema: correlation between microperimetry and optical coherence tomography findings. Invest Ophthalmol Vis Sci. 2006;47:3044–51.

    Article  PubMed  Google Scholar 

  15. Pranger F, Michels S, Geitzenauer W, Schmidt-Erfurth U, Simader C. Changes in retinal sensitivity in patients with neovascular age-related macular degeneration after systemic bevacizumab (Avastin) therapy. Retina. 2008;28:682–8.

    Article  Google Scholar 

  16. Parravano M, Oddone F, Tedeschi M, Chiaravalloti A, Perillo L, Boccassini B, et al. Retinal functional changes measured by microperimetry in neovascular age-related macular degeneration treated with ranibizumab. Retina. 2010;30:1017–24.

    Article  PubMed  Google Scholar 

  17. Ozdemir H, Karacorlu M, Senturk F, Karacorlu SA, Uysal O. Microperimetric changes after intravitreal bevacizumab injection for exudative age-related macular degeneration. Acta Ophthalmol. 2010;90:71–5.

    Article  PubMed  Google Scholar 

  18. Crossland M, Jackson M-L, Seiple WH. Microperimetry: a review of fundus related perimetry. Optom Rep. 2012;2:11–5.

    Google Scholar 

  19. Cho HJ, Kim CG, Yoo SJ, Cho SW, Lee DW, Kim JW, et al. Retinal functional changes measured by microperimetry in neovascular age-related macular degeneration treated with ranibizumab. Am J Ophthalmol. 2013;155:118–26.

    Article  CAS  PubMed  Google Scholar 

  20. Imamura Y, Engelbert M, Iida T, Freund KB, Yannuzzi LA. Polypoidal choroidal vasculopathy: a review. Surv Ophthalmol. 2010;55:501–15.

    Article  PubMed  Google Scholar 

  21. Treatment of Age-Related Macular Degeneration With Photodynamic Therapy. (TAP) Study Group. Photodynamic therapy of subfoveal choroidal neovascularization in age-related macular degeneration with verteporfin: one-year results of 2 randomized clinical trials–TAP report. Arch Ophthalmol. 1999;117:1329–45.

    Article  Google Scholar 

  22. Sato S, Hirooka K, Baba T, Tenkumo K, Nitta E, Shiraga F. Correlation between the ganglion cell inner plexiform layer thickness measured with Cirrus HD-OCT and macular visual field sensitivity measured with microperimetry. Invest Ophthalmol Vis Sci. 2012;54:3046–51.

    Article  Google Scholar 

  23. Wu Z, Jung CJ, Ayton LN, Luu CD, Guymer RH. Test–retest repeatability of microperimetry at the border of deep scotomas. Invest Ophthalmol Vis Sci. 2015;56:2606–11.

    Article  PubMed  Google Scholar 

  24. Koh A, Lee WK, Chen L-J, Chen S-J, Hashad Y, Kim H, et al. EVEREST study: efficacy and safety of verteporfin photodynamic therapy in combination with ranibizumab or alone versus ranibizumab monotherapy in patients with symptomatic macular polypoidal choroidal vasculopathy. Retina. 2012;32:1453–64.

    Article  CAS  PubMed  Google Scholar 

  25. Scupola A, Coscas G, Soubrane G, Balestrazzi E. Natural history of macular subretinal hemorrhage in age-related macular degeneration. Ophthalmologica. 1999;213:97–102.

    Article  CAS  PubMed  Google Scholar 

  26. Okanouchi T, Toshima S, Kimura S, Morizane Y, Shiraga F. Novel technique for subretinal injection using local removal of the internal limiting membrane. Retina. 2016;36:1035–8.

    Article  PubMed  Google Scholar 

  27. Treumer F, Roider J, Hillenkamp J. Long-term outcome of subretinal coapplication of rtPA and bevacizumab followed by repeated intravitreal anti-VEGF injections for neovascular AMD with submacular haemorrhage. Br J Ophthalmol. 2012;96:708–13.

    Article  PubMed  Google Scholar 

  28. Kim JH, Kim JW, Lee TG, Lew YJ. Treatment outcomes in eyes with polypoidal choroidal vasculopathy with poor baseline visual acuity. J Ocul Pharmacol Ther. 2015;31:241–7.

    Article  CAS  PubMed  Google Scholar 

  29. Chang YS, Kim JH, Kim JW, Lee TG, Kim CG, Cho SW. Polypoidal choroidal vasculopathy in patients aged less than 50 years: characteristics and 6-month treatment outcome. Graefes Arch Clin Exp Ophthalmol. 2016;254:1–7.

    Article  Google Scholar 

  30. Lin T-C, Hwang D-K, Lee F-L, Chen S-J. Visual prognosis of massive submacular hemorrhage in polypoidal choroidal vasculopathy with or without combination treatment. J Chin Med Assoc. 2016;79:159–65.

    Article  PubMed  Google Scholar 

  31. Lee SS, Ghosn C, Yu Z, Zacharias LC, Kao H, Lanni C, et al. Vitreous VEGF clearance is increased after vitrectomy. Invest Ophthalmol Vis Sci. 2010;51:2135–8.

    Article  PubMed  Google Scholar 

  32. Kakinoki M, Sawada O, Sawada T, Saishin Y, Kawamura H, Ohji M. Effect of vitrectomy on aqueous VEGF concentration and pharmacokinetics of bevacizumab in macaque monkeys. Invest Ophthalmol Vis Sci. 2012;53:5877–80.

    Article  CAS  PubMed  Google Scholar 

  33. Christoforidis JB, Williams MM, Wang J, Jiang A, Pratt C, Abdel-Rasoul M, et al. Anatomic and pharmacokinetic properties of intravitreal bevacizumab and ranibizumab after vitrectomy and lensectomy. Retina. 2013;33:946–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mizutani T, Yasukawa T, Ito Y, Takase A, Hirano Y, Yoshida M, et al. Pneumatic displacement of submacular hemorrhage with or without tissue plasminogen activator. Graefes Arch Clin Exp Ophthalmol. 2011;249:1153–7.

    Article  CAS  PubMed  Google Scholar 

  35. Saito M, Kano M, Itagaki K, Oguchi Y, Sekiryu T. Retinal pigment epithelium tear after intravitreal aflibercept injection. Clin Ophthalmol. 2013;7:1287–9.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ersoz MG, Karacorlu M, Arf S, Sayman Muslubas I, Hocaoglu M. Retinal pigment epithelium tears: classification, pathogenesis, predictors, and management. Surv Ophthalmol. 2017;62:493–505.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuki Morizane.

Ethics declarations

Conflicts of interest

S. Kimura, None; Y. Morizane, None; R. Matoba, None; M. Hosokawa, None; Y. Shiode, None; M. Hirano, None; S. Doi, None; S. Toshima, None; K. Takahashi, None; M. Hosogi, None; A. Fujiwara, None; F. Shiraga, None.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kimura, S., Morizane, Y., Matoba, R. et al. Retinal sensitivity after displacement of submacular hemorrhage due to polypoidal choroidal vasculopathy: effectiveness and safety of subretinal tissue plasminogen activator. Jpn J Ophthalmol 61, 472–478 (2017). https://doi.org/10.1007/s10384-017-0530-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-017-0530-0

Keywords

Navigation