Skip to main content

Advertisement

Log in

Wound stability and surgically induced corneal astigmatism after transconjunctival single-plane sclerocorneal incision cataract surgery

  • Clinical Investigation
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To compare intraocular pressure (IOP) immediately after cataract surgery, and surgically induced corneal astigmatism (SIA) and corneal shape changes between eyes with transconjunctival single-plane sclerocorneal incisions (TSSIs) and eyes with clear corneal incisions (CCIs).

Methods

Bilateral eyes of 64 patients undergoing phacoemulsification were randomized to undergo 2.4-mm temporal TSSI or CCI. IOP was measured preoperatively, and in the immediate postoperative periods. SIA was determined using vector analysis, and corneal shape changes and irregular astigmatism were evaluated using a videokeratography preoperatively, and in the early postoperative periods.

Results

Wound hydration was performed in 23 eyes (35.9 %) of the TSSI group and in 60 (93.8 %) of the CCI group (P < 0.0001). Mean IOP was significantly higher in the TSSI group than in the CCI group at 30, 60, and 120 min postoperatively (P ≤ 0.0179). SIA tended to be smaller in the TSSI group than the CCI group, but the difference was not significant. The higher order irregular astigmatism was smaller in the TSSI group than in the CCI group at 2 days (P = 0.0312). The videokeratography revealed a wound-related flattening postoperatively in both groups; this change disappeared within 4 weeks in the TSSI group, whereas it persisted until 12 weeks in the CCI group.

Conclusion

IOP was significantly higher immediately after TSSI than after CCI and required less wound hydration, suggesting better stability with TSSI. Higher order irregular astigmatism and wound-related corneal flattening were smaller after TSSI than after CCI in the early periods, suggesting that fewer corneal shape changes with TSSI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Koch DD, Del Pero RA, Wong TC, McCulloch RR, Weaver TA. Scleral flap surgery for modification of corneal astigmatism. Am J Ophthalmol. 1987;104:259–64.

    Article  CAS  PubMed  Google Scholar 

  2. Shepherd JR. Induced astigmatism in small incision cataract surgery. J Cataract Refract Surg. 1989;15:85–8.

    Article  CAS  PubMed  Google Scholar 

  3. Ernest PH, McFarland MS, Siepser SB, Gills JP, Pollard A, Wang D, et al. Sutureless surgery to minimize astigmatism. In: Gills JP, Sanders DR, editors. Small-incision cataract surgery. Thorofare: Slack Inc.; 1990. p. 103–73.

    Google Scholar 

  4. Fine IH. Clear corneal incisions. Int Ophthalmol Clin. 1994;34:59–72.

    Article  CAS  PubMed  Google Scholar 

  5. Grabow HB. The clear corneal incisions. In: Fine IH, Fichman RA, Grabow HB, editors. Clear-corneal cataract surgery and topical anesthesia. Thorofare: SLACK Inc.; 1993. p. 29–60.

    Google Scholar 

  6. Kohnen T, Dick B, Jacobi KW. Comparison of the induced astigmatism after temporal clear corneal tunnel incisions of different sizes. J Cataract Refract Surg. 1995;21:417–24.

    Article  CAS  PubMed  Google Scholar 

  7. Leaming DV. Practice styles and preferences of ASCRS members—2003 survey. J Cataract Refract Surg. 2004;30:892–900.

    Article  PubMed  Google Scholar 

  8. McDonnell PJ, Taban M, Sarayba M, Rao B, Zhang J, Schiffman R, et al. Dynamic morphology of clear corneal cataract incisions. Ophthalmology. 2003;110:2342–8.

    Article  PubMed  Google Scholar 

  9. Taban M, Sarayba MA, Ignacio TS, Behrens A, McDonnell PJ. Ingress of India ink into the anterior chamber through sutureless clear corneal cataract wounds. Arch Ophthalmol. 2005;123:643–8.

    Article  PubMed  Google Scholar 

  10. Cooper BA, Holekamp NM, Bohigian G, Thompson PA. Case-control study of endophthalmitis after cataract surgery comparing scleral tunnel and clear corneal wounds. Am J Ophthalmol. 2003;136:300–5.

    Article  PubMed  Google Scholar 

  11. Taban M, Behrens A, Newcomb RL, Nobe MY, Saedi G, Sweet PM, et al. Acute endophthalmitis following cataract surgery: a systematic review of the literature. Arch Ophthalmol. 2005;123:613–20.

    Article  PubMed  Google Scholar 

  12. Lundström M, Wejde G, Stenevi U, Thorburn W, Montan P. Endophthalmitis after cataract surgery: a nationwide prospective study evaluating incidence in relation to incision type and location. Ophthalmology. 2007;114:866–70.

    Article  PubMed  Google Scholar 

  13. Hayashi K, Tsuru T, Yoshida M, Hirata A. Intraocular pressure and wound status in eyes with immediately after scleral tunnel incision and clear corneal incision cataract surgery. Am J Ophthalmol. 2014;158:232–41.

    Article  PubMed  Google Scholar 

  14. Gross RH, Miller KM. Corneal astigmatism after phacoemulsification and lens implantation through unsutured scleral and corneal tunnel incisions. Am J Ophthalmol. 1996;121:57–64.

    Article  CAS  PubMed  Google Scholar 

  15. Olsen T, Dam-Johansen M, Bek T, Hjortdal JØ. Corneal versus scleral tunnel incision in cataract surgery: a randomized study. J Cataract Refract Surg. 1997;23:337–41.

    Article  CAS  PubMed  Google Scholar 

  16. Hayashi K, Yoshida M, Hayashi H. Corneal shape changes after 2.0 mm or 3.0 mm clear corneal versus scleral tunnel incision cataract surgery. Ophthalmology. 2010;117:1313–23.

    Article  PubMed  Google Scholar 

  17. Sugai S, Yoshitomi F, Oshika T. Transconjunctival single-plane sclerocorneal incisions versus clear corneal incisions in cataract surgery. J Cataract Refract Surg. 2010;36:1503–7.

    Article  PubMed  Google Scholar 

  18. Hayashi K, Yoshida M, Manabe S, Yoshimura K. Effect of high versus normal pressurization on changes in intraocular pressure immediately after clear corneal cataract surgery. J Cataract Refract Surg. 2014;40:87–94.

    Article  PubMed  Google Scholar 

  19. Pakrou N, Gray T, Mills R, Landers J, Craig J. Clinical comparison of the Icare tonometer and Goldmann applanation tonometry. J Glaucoma. 2008;17:43–7.

    Article  PubMed  Google Scholar 

  20. Nakamura M, Darhad U, Tatsumi Y, Fujioka M, Kusuhara A, Maeda H, et al. Agreement of rebound tonometer in measuring intraocular pressure with three types of applanation tonometers. Am J Ophthalmol. 2006;142:332–4.

    Article  PubMed  Google Scholar 

  21. Scuderi GL, Cascone NC, Regine F, Perdicchi A, Cerulli A, Recupero SM. Validity and limits of the rebound tonometer (ICare®): clinical study. Eur J Ophthalmol. 2011;21:251–7.

    Article  PubMed  Google Scholar 

  22. Salim S, Du FH, Wan J. Comparison of intraocular pressure measurements and assessment of intraobserver and interobserver reproducibility with the portable ICare rebound tonometer and Goldmann applanation tonometer in glaucoma patients. J Glaucoma. 2013;22:325–9.

    Article  PubMed  Google Scholar 

  23. Brusini P, Salvetat ML, Zeppieri M, Tosoni C, Parisi L. Comparison of ICare tonometer with Goldmann applanation tonometer in glaucoma patients. J Glaucoma. 2006;15:213–7.

    Article  PubMed  Google Scholar 

  24. Sahin A, Basmak H, Niyaz L, Yildirim N. Reproducibility and tolerability of the ICare rebound tonometer in school children. J Glaucoma. 2007;16:185–8.

    Article  PubMed  Google Scholar 

  25. Munkwitz S, Elkarmouty A, Hoffmann EM, Pfeiffer N, Thieme H. Comparison of the iCare rebound tonometer and the Goldmann applanation tonometer over a wide IOP range. Graefes Arch Clin Exp Ophthalmol. 2008;246:875–9.

    Article  CAS  PubMed  Google Scholar 

  26. Jablonski KS, Rosentreter A, Gaki S, Lappas A, Dietlein TS. Clinical use of a new position-independent rebound tonometer. J Glaucoma. 2013;22:763–7.

    Article  PubMed  Google Scholar 

  27. Rao A, Kumar M, Prakash B, Varshney G. Relationship of central corneal thickness and intraocular pressure by iCare rebound tonometer. J Glaucoma. 2014;23:380–4.

    Article  PubMed  Google Scholar 

  28. Calladine D, Packard R. Clear corneal incision architecture in the immediate postoperative period evaluated using optical coherence tomography. J Cataract Refract Surg. 2007;33:1429–35.

    Article  PubMed  Google Scholar 

  29. Alpins NA. Vector analysis of astigmatism changes by flattening, steepening, and torque. J Cataract Refract Surg. 1997;23:1503–14.

    Article  CAS  PubMed  Google Scholar 

  30. Hayashi K, Yoshida M, Hayashi H. Postoperative corneal shape changes: microincision versus small-incision coaxial cataract surgery. J Cataract Refract Surg. 2009;35:233–9.

    Article  PubMed  Google Scholar 

  31. Hayashi K, Hayashi H, Oshika T, Hayashi F. Fourier analysis of irregular astigmatism after implantation of 3 types of intraocular lenses. J Cataract Refract Surg. 2000;26:1510–6.

    Article  CAS  PubMed  Google Scholar 

  32. Ernest PH, Lavery KT, Kiessling LA. Relative strength of scleral corneal and clear corneal incisions constructed in cadaver eyes. J Cataract Refract Surg. 1994;20:626–9.

    Article  CAS  PubMed  Google Scholar 

  33. Sarayba MA, Taban M, Ignacio TS, Behrens A, McDonnell PJ. Inflow of ocular surface fluid through clear corneal cataract incisions: a laboratory model. Am J Ophthalmol. 2004;138:206–10.

    Article  PubMed  Google Scholar 

  34. Herretes S, Stark WJ, Pirouzmanesh A, Reyes JM, McDonnell PJ, Behrens A. Inflow of ocular surface fluid into the anterior chamber after phacoemulsification through sutureless corneal wounds. Am J Ophthalmol. 2005;140:737–40.

    Article  PubMed  Google Scholar 

  35. Chawdhary S, Anand A. Early post-phacoemulsification hypotony as a risk factor for intraocular contamination: in vivo model. J Cataract Refract Surg. 2006;32:609–13.

    Article  PubMed  Google Scholar 

  36. May W, Castro-Combs J, Camacho W, Wittmann P, Behrens A. Analysis of clear corneal incision integrity in an ex vivo model. J Cataract Refract Surg. 2008;34:1013–8.

    Article  PubMed  Google Scholar 

  37. González Pérez J, Cerviño A, Giraldez MJ, Parafita M, Yebra-Pimentel E. Accuracy and precision of EyeSys and Orbscan systems on calibrated spherical test surfaces. Eye Contact Lens. 2004;30:74–8.

    Article  PubMed  Google Scholar 

  38. Read SA, Collins MJ, Iskander DR, Davis BA. Corneal topography with Scheimpflug imaging and videokeratography: comparative study of normal eyes. J Cataract Refract Surg. 2009;35:1072–81.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank SciTechEdit International (Highlands Ranch, CL, USA) for editorial assistance and Masahiro Toda, Ph.D. (CMIC Co., Ltd, Tokyo, Japan) and Kozi Yonemoto, Ph.D. (The Biostatistics Center, Kurume University, Kurume, Japan) for statistical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Hayashi.

Ethics declarations

Conflicts of interest

K. Hayashi, Grants (Alcon, Bayer Yakuhin, Wakamoto Pharmaceutical); S. Ogawa, Grants (Alcon, Bayer Yakuhin, Wakamoto Pharmaceutical); M. Yoshida, Grants (Alcon, Bayer Yakuhin, Wakamoto Pharmaceutical); and K. Yoshimura, Grants (Alcon, Bayer Yakuhin, Wakamoto Pharmaceutical).

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayashi, K., Ogawa, S., Yoshida, M. et al. Wound stability and surgically induced corneal astigmatism after transconjunctival single-plane sclerocorneal incision cataract surgery. Jpn J Ophthalmol 61, 113–123 (2017). https://doi.org/10.1007/s10384-016-0480-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-016-0480-y

Keywords

Navigation