Skip to main content

Advertisement

Log in

Corona sign: manifestation of peripheral corneal epithelial edema as a possible marker of the progression of corneal endothelial dysfunction

  • Clinical Investigation
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To describe a characteristic form of the corona sign and its clinical relevance to the degree of corneal endothelial decompensation and investigate the underlying mechanism using a rabbit model.

Methods

These observational cases include 31 patients undergoing penetrating keratoplasty (PKP) and 15 patients undergoing Descemet stripping automated endothelial keratoplasty (DSAEK) with special attention to the circumferentially developed corneal epithelial edema. We also conducted a laboratory observation of horizontal water flow in the rabbit cornea.

Results

We consistently observed the corona sign at the superior periphery during the initial stage of corneal endothelial decompensation after PKP. With progressive corneal endothelial cellular loss, the epithelial edema gradually expanded circumferentially in the periphery. The endothelial cellular density associated with the corona sign significantly (P < 0.01) decreased compared with that without the sign. The endothelial cellular density decreased significantly (P < 0.05) in cases with a circumferential corona sign compared with a superior corona sign. After DSAEK, however, the corneal epithelial edema subsided from the center but persisted peripherally as a corona sign in all cases. By 3 months postoperatively, the epithelial edema was confined to the superior periphery along with uneventful corneal endothelial healing. Rabbit experiments showed that total corneal endothelial decompensation decreased the horizontal intracorneal water migration (Inoue–Ohashi phenomenon) in the corneal periphery and induced peripheral corneal edema.

Conclusions

The slit-lamp microscopic findings of the corona-like epithelial edema in the peripheral cornea are associated with the stage of corneal endothelial function. To support this, the developmental mechanism of the corona sign was demonstrated experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Goldman JN, Benedek GB. The relationship between morphology and transparency in the nonswelling corneal stroma of the shark. Investig Ophthalmol Vis Sci. 1967;6:574–600.

    CAS  Google Scholar 

  2. Klyce SD. Corneal physiology In: The cornea. Philadelphia, PA: Lippincott Williams & Wilkins; 2005. p. 37–58

  3. Klyce SD, Russell SR. Numerical solution of coupled transport equations applied to corneal hydration dynamics. J Physiol. 1979;292:107–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dohlman CH, Hedbys BO, Mishima S. The swelling pressure of the corneal stroma. Investig Ophthalmol Vis Sci. 1962;1:158–62.

    CAS  Google Scholar 

  5. Fatt I, Goldstick TK. Dynamics of water transport in swelling membranes. J Colloid Sci. 1965;20:962–89.

    Article  CAS  PubMed  Google Scholar 

  6. Hedbys BO, Dohlman CH. A new method for the determination of the swelling pressure of the corneal stroma in vitro. Exp Eye Res. 1963;2:122–9.

    Article  CAS  PubMed  Google Scholar 

  7. Maurice DM. The permeability to sodium ions of the living rabbit’s cornea. J Physiol. 1951;112:367–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mishima S, Hedbys BO. The permeability of the corneal epithelium and endothelium to water. Exp Eye Res. 1967;6:10–32.

    Article  CAS  PubMed  Google Scholar 

  9. Harris JE, Nordquist LT. The hydration of the cornea: I. The transport of water from the cornea. Am J Ophthalmol. 1955;40:100–10.

    Article  CAS  PubMed  Google Scholar 

  10. Hodson S, Miller F. The bicarbonate ion pump in the endothelium which regulates the hydration of rabbit cornea. J Physiol. 1976;263:563–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Manchester PT Jr. Hydration of the cornea. Trans Am Ophthalmol Soc. 1970;68:425–61.

    PubMed  Google Scholar 

  12. Ytteborg J, Dohlman CH. Corneal edema and intraocular pressure: II. Clinical results. Arch Ophthalmol. 1965;74:477–84.

    Article  CAS  PubMed  Google Scholar 

  13. Maurice DM. The location of the fluid pump in the cornea. J Physiol. 1972;221:43–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dohlman CH. Physiology of the cornea: corneal edema. In: The cornea. Scientific Foundations and Clinical Practice. Boston/Toronto: Little, Brown and Company; 1983. P. 3–17

  15. Yeh PC, Colby K. Corneal endothelial dystrophies. In: The cornea. Philadelphia, PA: Lippincott Williams & Wilkins; 2005. p. 849–73

  16. Kandori M, Inoue T, Takamatsu F, Kojima Y, Hori Y, Maeda N, et al. Prevalence and features of keratitis with quantitative polymerase chain reaction positive for cytomegalovirus. Ophthalmology. 2010;117:216–22.

    Article  PubMed  Google Scholar 

  17. Brown SI, McLean JM. Peripheral corneal edema after cataract extraction. A new clinical entity. Trans Am Acad Ophthalmol Otolaryngol. 1969;73:465–70.

    CAS  PubMed  Google Scholar 

  18. Reed JW, Cain LR, Weaver RG, Oberfeld SM. Clinical and pathologic findings of aphakic peripheral corneal edema: Brown–McLean syndrome. Cornea. 1992;11:577–83.

    Article  CAS  PubMed  Google Scholar 

  19. Gothard TW, Hardten DR, Lane SS, Doughman DJ, Krachmer JH, Holland EJ. Clinical findings in Brown–McLean syndrome. Am J Ophthalmol. 1993;115:729–37.

    Article  CAS  PubMed  Google Scholar 

  20. Inoue T, Kobayashi T, Nakao S, Hara Y, Suzuki T, Hayashi Y, et al. Horizontal intracorneal swirling water migration indicative of corneal endothelial function. Investig Ophthalmol Vis Sci. 2014;55:8006–14.

    Article  Google Scholar 

  21. Lass JH, Benetz BA, Gal RL, Kolman C, Raghinaru D, Dontchev M, et al. Donor age and factors related to endothelial cell loss 10 years after penetrating keratoplasty: specular microscopy ancillary study. Ophthalmology. 2013;120:2428–35.

    Article  PubMed  Google Scholar 

  22. Kobayashi A, Yokogawa H, Sugiyama K. Non-Descemet stripping automated endothelial keratoplasty for endothelial dysfunction secondary to argon laser iridotomy. Am J Ophthalmol. 2008;146:543–9.

    Article  PubMed  Google Scholar 

  23. Chan T, Payar S, Holden BA. Corneal thickness profiles in rabbits using an ultrasonic pachometer. Investig Ophthalmol Vis Sci. 1983;24:1408–10.

    CAS  Google Scholar 

  24. Sugar A. Brown–McLean syndrome occurring in a corneal graft. Cornea. 1997;16:493–4.

    CAS  PubMed  Google Scholar 

  25. Maurice DM. Chapter I. The cornea and sclera. In: Davson H, editor. The Eye. 3rd ed. New York: Academic Press; 1984. p. 1–158.

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Medical International for the English language review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoyuki Inoue.

Ethics declarations

Conflicts of interest

T. Inoue None; Y. Hara None; T. Kobayashi None; X. Zheng None; T. Suzuki None; A. Shiraishi None; Y. Ohashi None.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inoue, T., Hara, Y., Kobayashi, T. et al. Corona sign: manifestation of peripheral corneal epithelial edema as a possible marker of the progression of corneal endothelial dysfunction. Jpn J Ophthalmol 60, 349–356 (2016). https://doi.org/10.1007/s10384-016-0459-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-016-0459-8

Keywords

Navigation